| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8 | , , , ⊢  |
| : , : , : , : , : , :  |
1 | theorem | | ⊢  |
| proveit.numbers.multiplication.association |
2 | reference | 43 | ⊢  |
3 | reference | 71 | ⊢  |
4 | instantiation | 54 | ⊢  |
| : , :  |
5 | instantiation | 12, 9, 46 | , ⊢  |
| : , :  |
6 | instantiation | 12, 13, 10 | , ⊢  |
| : , :  |
7 | instantiation | 12, 11, 46 | , , ⊢  |
| : , :  |
8 | instantiation | 12, 13, 14 | ⊢  |
| : , :  |
9 | instantiation | 69, 58, 25 | ⊢  |
| : , : , :  |
10 | instantiation | 31, 15, 16 | , ⊢  |
| : , : , :  |
11 | instantiation | 69, 58, 17 | , ⊢  |
| : , : , :  |
12 | theorem | | ⊢  |
| proveit.numbers.exponentiation.exp_complex_closure |
13 | instantiation | 69, 58, 18 | ⊢  |
| : , : , :  |
14 | instantiation | 31, 19, 20 | ⊢  |
| : , : , :  |
15 | instantiation | 51, 36, 21 | , ⊢  |
| : , :  |
16 | instantiation | 28, 22, 23 | , ⊢  |
| : , : , :  |
17 | instantiation | 24, 25, 50 | , ⊢  |
| : , :  |
18 | instantiation | 69, 64, 26 | ⊢  |
| : , : , :  |
19 | instantiation | 51, 36, 27 | ⊢  |
| : , :  |
20 | instantiation | 28, 29, 30 | ⊢  |
| : , : , :  |
21 | instantiation | 31, 32, 33 | , ⊢  |
| : , : , :  |
22 | instantiation | 41, 43, 34, 42, 35, 44, 36, 52, 53, 46 | , ⊢  |
| : , : , : , : , : , :  |
23 | instantiation | 41, 42, 71, 34, 44, 37, 35, 48, 49, 52, 53, 46 | , ⊢  |
| : , : , : , : , : , :  |
24 | theorem | | ⊢  |
| proveit.numbers.addition.add_real_closure_bin |
25 | assumption | | ⊢  |
26 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
27 | instantiation | 51, 52, 39 | ⊢  |
| : , :  |
28 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
29 | instantiation | 41, 43, 71, 42, 38, 44, 36, 52, 39 | ⊢  |
| : , : , : , : , : , :  |
30 | instantiation | 41, 42, 71, 44, 37, 38, 48, 49, 52, 39 | ⊢  |
| : , : , : , : , : , :  |
31 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
32 | instantiation | 51, 40, 46 | , ⊢  |
| : , :  |
33 | instantiation | 41, 42, 71, 43, 44, 45, 52, 53, 46 | , ⊢  |
| : , : , : , : , : , :  |
34 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
35 | instantiation | 47 | ⊢  |
| : , : , :  |
36 | instantiation | 51, 48, 49 | ⊢  |
| : , :  |
37 | instantiation | 54 | ⊢  |
| : , :  |
38 | instantiation | 54 | ⊢  |
| : , :  |
39 | instantiation | 69, 58, 50 | ⊢  |
| : , : , :  |
40 | instantiation | 51, 52, 53 | ⊢  |
| : , :  |
41 | theorem | | ⊢  |
| proveit.numbers.multiplication.disassociation |
42 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
43 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
44 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
45 | instantiation | 54 | ⊢  |
| : , :  |
46 | instantiation | 69, 58, 55 | ⊢  |
| : , : , :  |
47 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
48 | instantiation | 69, 58, 56 | ⊢  |
| : , : , :  |
49 | instantiation | 69, 58, 57 | ⊢  |
| : , : , :  |
50 | assumption | | ⊢  |
51 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_complex_closure_bin |
52 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
53 | instantiation | 69, 58, 59 | ⊢  |
| : , : , :  |
54 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
55 | instantiation | 69, 61, 60 | ⊢  |
| : , : , :  |
56 | instantiation | 69, 61, 62 | ⊢  |
| : , : , :  |
57 | instantiation | 69, 64, 63 | ⊢  |
| : , : , :  |
58 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
59 | instantiation | 69, 64, 65 | ⊢  |
| : , : , :  |
60 | instantiation | 69, 67, 66 | ⊢  |
| : , : , :  |
61 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
62 | instantiation | 69, 67, 68 | ⊢  |
| : , : , :  |
63 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
64 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
65 | assumption | | ⊢  |
66 | assumption | | ⊢  |
67 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
68 | instantiation | 69, 70, 71 | ⊢  |
| : , : , :  |
69 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
70 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
71 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |