| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | , , , ⊢  |
| : , : , : , :  |
1 | reference | 21 | ⊢  |
2 | instantiation | 82, 5, 6 | , , , ⊢  |
| : , : , :  |
3 | instantiation | 82, 7, 8 | , , , ⊢  |
| : , : , :  |
4 | instantiation | 70, 9 | , , , ⊢  |
| : , :  |
5 | instantiation | 67, 26 | ⊢  |
| : , : , :  |
6 | instantiation | 82, 10, 11 | , , , ⊢  |
| : , : , :  |
7 | instantiation | 27, 73, 28, 74, 12, 38, 39, 18, 46 | , , , ⊢  |
| : , : , : , : , : , : , :  |
8 | instantiation | 27, 137, 132, 73, 37, 74, 46, 38, 39, 18 | , , , ⊢  |
| : , : , : , : , : , : , :  |
9 | instantiation | 82, 13, 14 | , , , ⊢  |
| : , : , :  |
10 | instantiation | 27, 132, 137, 15, 38, 52, 18, 46 | , , , ⊢  |
| : , : , : , : , : , : , :  |
11 | instantiation | 35, 137, 132, 16, 17, 38, 52, 18, 46, 19* | , , , ⊢  |
| : , : , : , : , : , :  |
12 | instantiation | 44 | ⊢  |
| : , : , :  |
13 | instantiation | 67, 20 | ⊢  |
| : , : , :  |
14 | instantiation | 21, 22, 23, 24 | , , , ⊢  |
| : , : , : , :  |
15 | instantiation | 108 | ⊢  |
| : , :  |
16 | instantiation | 108 | ⊢  |
| : , :  |
17 | instantiation | 108 | ⊢  |
| : , :  |
18 | instantiation | 55, 110, 85 | ⊢  |
| : , :  |
19 | instantiation | 70, 25, 100* | ⊢  |
| : , :  |
20 | instantiation | 67, 26 | ⊢  |
| : , : , :  |
21 | theorem | | ⊢  |
| proveit.logic.equality.four_chain_transitivity |
22 | instantiation | 27, 28, 137, 29, 92, 33, 85, 38, 39 | , , , ⊢  |
| : , : , : , : , : , : , :  |
23 | instantiation | 35, 73, 132, 30, 74, 31, 32, 92, 33, 85, 38, 39, 34* | , , , ⊢  |
| : , : , : , : , : , :  |
24 | instantiation | 35, 137, 132, 36, 37, 46, 85, 38, 39, 40* | , , , ⊢  |
| : , : , : , : , : , :  |
25 | instantiation | 72, 73, 132, 137, 74, 64, 121, 52, 41* | ⊢  |
| : , : , : , : , : , :  |
26 | instantiation | 42, 92, 110, 106, 43* | ⊢  |
| : , :  |
27 | theorem | | ⊢  |
| proveit.numbers.addition.leftward_commutation |
28 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
29 | instantiation | 44 | ⊢  |
| : , : , :  |
30 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
31 | instantiation | 108 | ⊢  |
| : , :  |
32 | instantiation | 45 | ⊢  |
| : , : , : , :  |
33 | instantiation | 90, 46 | ⊢  |
| :  |
34 | instantiation | 82, 47, 48, 49* | ⊢  |
| : , : , :  |
35 | theorem | | ⊢  |
| proveit.numbers.addition.association |
36 | instantiation | 108 | ⊢  |
| : , :  |
37 | instantiation | 108 | ⊢  |
| : , :  |
38 | instantiation | 135, 125, 50 | ⊢  |
| : , : , :  |
39 | instantiation | 55, 110, 52 | ⊢  |
| : , :  |
40 | instantiation | 70, 51, 100* | ⊢  |
| : , :  |
41 | instantiation | 109, 52 | ⊢  |
| :  |
42 | theorem | | ⊢  |
| proveit.numbers.division.div_as_mult |
43 | instantiation | 82, 53, 54 | ⊢  |
| : , : , :  |
44 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
45 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
46 | instantiation | 55, 91, 92 | ⊢  |
| : , :  |
47 | instantiation | 67, 56 | ⊢  |
| : , : , :  |
48 | instantiation | 70, 57 | ⊢  |
| : , :  |
49 | instantiation | 58, 134, 59, 129, 60*, 61*, 62* | ⊢  |
| : , : , : , :  |
50 | instantiation | 135, 117, 63 | ⊢  |
| : , : , :  |
51 | instantiation | 72, 73, 132, 137, 74, 64, 121, 85, 65* | ⊢  |
| : , : , : , : , : , :  |
52 | instantiation | 135, 125, 66 | ⊢  |
| : , : , :  |
53 | instantiation | 67, 68 | ⊢  |
| : , : , :  |
54 | instantiation | 69, 92, 91 | ⊢  |
| : , :  |
55 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_complex_closure_bin |
56 | instantiation | 70, 71 | ⊢  |
| : , :  |
57 | instantiation | 72, 73, 132, 137, 74, 75, 121, 76, 92, 77* | ⊢  |
| : , : , : , : , : , :  |
58 | theorem | | ⊢  |
| proveit.numbers.addition.rational_pair_addition |
59 | instantiation | 78, 134 | ⊢  |
| :  |
60 | instantiation | 79, 121, 80 | ⊢  |
| :  |
61 | instantiation | 81, 121, 110, 106 | ⊢  |
| : , :  |
62 | instantiation | 82, 83, 84 | ⊢  |
| : , : , :  |
63 | assumption | | ⊢  |
64 | instantiation | 108 | ⊢  |
| : , :  |
65 | instantiation | 109, 85 | ⊢  |
| :  |
66 | assumption | | ⊢  |
67 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
68 | instantiation | 86, 87, 93, 88* | ⊢  |
| : , :  |
69 | theorem | | ⊢  |
| proveit.numbers.multiplication.commutation |
70 | theorem | | ⊢  |
| proveit.logic.equality.equals_reversal |
71 | instantiation | 89, 91, 92 | ⊢  |
| : , :  |
72 | theorem | | ⊢  |
| proveit.numbers.multiplication.distribute_through_sum |
73 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
74 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
75 | instantiation | 108 | ⊢  |
| : , :  |
76 | instantiation | 90, 91 | ⊢  |
| :  |
77 | instantiation | 109, 92 | ⊢  |
| :  |
78 | theorem | | ⊢  |
| proveit.numbers.negation.int_closure |
79 | theorem | | ⊢  |
| proveit.numbers.division.frac_cancel_complete |
80 | instantiation | 116, 93 | ⊢  |
| :  |
81 | theorem | | ⊢  |
| proveit.numbers.division.neg_frac_neg_numerator |
82 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
83 | instantiation | 94, 132, 95, 96, 97, 98 | ⊢  |
| : , : , : , :  |
84 | instantiation | 99, 121, 110, 100 | ⊢  |
| : , : , :  |
85 | instantiation | 135, 125, 101 | ⊢  |
| : , : , :  |
86 | theorem | | ⊢  |
| proveit.numbers.exponentiation.neg_power_as_div |
87 | instantiation | 135, 102, 103 | ⊢  |
| : , : , :  |
88 | instantiation | 104, 110 | ⊢  |
| :  |
89 | theorem | | ⊢  |
| proveit.numbers.negation.neg_times_pos |
90 | theorem | | ⊢  |
| proveit.numbers.negation.complex_closure |
91 | instantiation | 105, 121, 110, 106 | ⊢  |
| : , :  |
92 | instantiation | 135, 125, 107 | ⊢  |
| : , : , :  |
93 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat1 |
94 | axiom | | ⊢  |
| proveit.core_expr_types.operations.operands_substitution |
95 | instantiation | 108 | ⊢  |
| : , :  |
96 | instantiation | 108 | ⊢  |
| : , :  |
97 | instantiation | 109, 110 | ⊢  |
| :  |
98 | instantiation | 111, 121, 112* | ⊢  |
| : , :  |
99 | theorem | | ⊢  |
| proveit.numbers.addition.subtraction.subtract_from_add |
100 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_1_1 |
101 | instantiation | 135, 117, 113 | ⊢  |
| : , : , :  |
102 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
103 | instantiation | 135, 114, 115 | ⊢  |
| : , : , :  |
104 | theorem | | ⊢  |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
105 | theorem | | ⊢  |
| proveit.numbers.division.div_complex_closure |
106 | instantiation | 116, 128 | ⊢  |
| :  |
107 | instantiation | 135, 117, 118 | ⊢  |
| : , : , :  |
108 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
109 | theorem | | ⊢  |
| proveit.numbers.multiplication.elim_one_left |
110 | instantiation | 135, 125, 119 | ⊢  |
| : , : , :  |
111 | theorem | | ⊢  |
| proveit.numbers.negation.pos_times_neg |
112 | instantiation | 120, 121 | ⊢  |
| :  |
113 | assumption | | ⊢  |
114 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
115 | instantiation | 135, 122, 123 | ⊢  |
| : , : , :  |
116 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
117 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real |
118 | assumption | | ⊢  |
119 | instantiation | 135, 130, 124 | ⊢  |
| : , : , :  |
120 | theorem | | ⊢  |
| proveit.numbers.multiplication.elim_one_right |
121 | instantiation | 135, 125, 126 | ⊢  |
| : , : , :  |
122 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
123 | instantiation | 135, 127, 128 | ⊢  |
| : , : , :  |
124 | instantiation | 135, 133, 129 | ⊢  |
| : , : , :  |
125 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
126 | instantiation | 135, 130, 131 | ⊢  |
| : , : , :  |
127 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
128 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
129 | instantiation | 135, 136, 132 | ⊢  |
| : , : , :  |
130 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
131 | instantiation | 135, 133, 134 | ⊢  |
| : , : , :  |
132 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
133 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
134 | instantiation | 135, 136, 137 | ⊢  |
| : , : , :  |
135 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
136 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
137 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |