| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | , , , ⊢ |
| : , : , : , : |
1 | reference | 21 | ⊢ |
2 | instantiation | 82, 5, 6 | , , , ⊢ |
| : , : , : |
3 | instantiation | 82, 7, 8 | , , , ⊢ |
| : , : , : |
4 | instantiation | 70, 9 | , , , ⊢ |
| : , : |
5 | instantiation | 67, 26 | ⊢ |
| : , : , : |
6 | instantiation | 82, 10, 11 | , , , ⊢ |
| : , : , : |
7 | instantiation | 27, 73, 28, 74, 12, 38, 39, 18, 46 | , , , ⊢ |
| : , : , : , : , : , : , : |
8 | instantiation | 27, 137, 132, 73, 37, 74, 46, 38, 39, 18 | , , , ⊢ |
| : , : , : , : , : , : , : |
9 | instantiation | 82, 13, 14 | , , , ⊢ |
| : , : , : |
10 | instantiation | 27, 132, 137, 15, 38, 52, 18, 46 | , , , ⊢ |
| : , : , : , : , : , : , : |
11 | instantiation | 35, 137, 132, 16, 17, 38, 52, 18, 46, 19* | , , , ⊢ |
| : , : , : , : , : , : |
12 | instantiation | 44 | ⊢ |
| : , : , : |
13 | instantiation | 67, 20 | ⊢ |
| : , : , : |
14 | instantiation | 21, 22, 23, 24 | , , , ⊢ |
| : , : , : , : |
15 | instantiation | 108 | ⊢ |
| : , : |
16 | instantiation | 108 | ⊢ |
| : , : |
17 | instantiation | 108 | ⊢ |
| : , : |
18 | instantiation | 55, 110, 85 | ⊢ |
| : , : |
19 | instantiation | 70, 25, 100* | ⊢ |
| : , : |
20 | instantiation | 67, 26 | ⊢ |
| : , : , : |
21 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
22 | instantiation | 27, 28, 137, 29, 92, 33, 85, 38, 39 | , , , ⊢ |
| : , : , : , : , : , : , : |
23 | instantiation | 35, 73, 132, 30, 74, 31, 32, 92, 33, 85, 38, 39, 34* | , , , ⊢ |
| : , : , : , : , : , : |
24 | instantiation | 35, 137, 132, 36, 37, 46, 85, 38, 39, 40* | , , , ⊢ |
| : , : , : , : , : , : |
25 | instantiation | 72, 73, 132, 137, 74, 64, 121, 52, 41* | ⊢ |
| : , : , : , : , : , : |
26 | instantiation | 42, 92, 110, 106, 43* | ⊢ |
| : , : |
27 | theorem | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
28 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
29 | instantiation | 44 | ⊢ |
| : , : , : |
30 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
31 | instantiation | 108 | ⊢ |
| : , : |
32 | instantiation | 45 | ⊢ |
| : , : , : , : |
33 | instantiation | 90, 46 | ⊢ |
| : |
34 | instantiation | 82, 47, 48, 49* | ⊢ |
| : , : , : |
35 | theorem | | ⊢ |
| proveit.numbers.addition.association |
36 | instantiation | 108 | ⊢ |
| : , : |
37 | instantiation | 108 | ⊢ |
| : , : |
38 | instantiation | 135, 125, 50 | ⊢ |
| : , : , : |
39 | instantiation | 55, 110, 52 | ⊢ |
| : , : |
40 | instantiation | 70, 51, 100* | ⊢ |
| : , : |
41 | instantiation | 109, 52 | ⊢ |
| : |
42 | theorem | | ⊢ |
| proveit.numbers.division.div_as_mult |
43 | instantiation | 82, 53, 54 | ⊢ |
| : , : , : |
44 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
46 | instantiation | 55, 91, 92 | ⊢ |
| : , : |
47 | instantiation | 67, 56 | ⊢ |
| : , : , : |
48 | instantiation | 70, 57 | ⊢ |
| : , : |
49 | instantiation | 58, 134, 59, 129, 60*, 61*, 62* | ⊢ |
| : , : , : , : |
50 | instantiation | 135, 117, 63 | ⊢ |
| : , : , : |
51 | instantiation | 72, 73, 132, 137, 74, 64, 121, 85, 65* | ⊢ |
| : , : , : , : , : , : |
52 | instantiation | 135, 125, 66 | ⊢ |
| : , : , : |
53 | instantiation | 67, 68 | ⊢ |
| : , : , : |
54 | instantiation | 69, 92, 91 | ⊢ |
| : , : |
55 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
56 | instantiation | 70, 71 | ⊢ |
| : , : |
57 | instantiation | 72, 73, 132, 137, 74, 75, 121, 76, 92, 77* | ⊢ |
| : , : , : , : , : , : |
58 | theorem | | ⊢ |
| proveit.numbers.addition.rational_pair_addition |
59 | instantiation | 78, 134 | ⊢ |
| : |
60 | instantiation | 79, 121, 80 | ⊢ |
| : |
61 | instantiation | 81, 121, 110, 106 | ⊢ |
| : , : |
62 | instantiation | 82, 83, 84 | ⊢ |
| : , : , : |
63 | assumption | | ⊢ |
64 | instantiation | 108 | ⊢ |
| : , : |
65 | instantiation | 109, 85 | ⊢ |
| : |
66 | assumption | | ⊢ |
67 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
68 | instantiation | 86, 87, 93, 88* | ⊢ |
| : , : |
69 | theorem | | ⊢ |
| proveit.numbers.multiplication.commutation |
70 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
71 | instantiation | 89, 91, 92 | ⊢ |
| : , : |
72 | theorem | | ⊢ |
| proveit.numbers.multiplication.distribute_through_sum |
73 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
74 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
75 | instantiation | 108 | ⊢ |
| : , : |
76 | instantiation | 90, 91 | ⊢ |
| : |
77 | instantiation | 109, 92 | ⊢ |
| : |
78 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
79 | theorem | | ⊢ |
| proveit.numbers.division.frac_cancel_complete |
80 | instantiation | 116, 93 | ⊢ |
| : |
81 | theorem | | ⊢ |
| proveit.numbers.division.neg_frac_neg_numerator |
82 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
83 | instantiation | 94, 132, 95, 96, 97, 98 | ⊢ |
| : , : , : , : |
84 | instantiation | 99, 121, 110, 100 | ⊢ |
| : , : , : |
85 | instantiation | 135, 125, 101 | ⊢ |
| : , : , : |
86 | theorem | | ⊢ |
| proveit.numbers.exponentiation.neg_power_as_div |
87 | instantiation | 135, 102, 103 | ⊢ |
| : , : , : |
88 | instantiation | 104, 110 | ⊢ |
| : |
89 | theorem | | ⊢ |
| proveit.numbers.negation.neg_times_pos |
90 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
91 | instantiation | 105, 121, 110, 106 | ⊢ |
| : , : |
92 | instantiation | 135, 125, 107 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
94 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
95 | instantiation | 108 | ⊢ |
| : , : |
96 | instantiation | 108 | ⊢ |
| : , : |
97 | instantiation | 109, 110 | ⊢ |
| : |
98 | instantiation | 111, 121, 112* | ⊢ |
| : , : |
99 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
100 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
101 | instantiation | 135, 117, 113 | ⊢ |
| : , : , : |
102 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
103 | instantiation | 135, 114, 115 | ⊢ |
| : , : , : |
104 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
105 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
106 | instantiation | 116, 128 | ⊢ |
| : |
107 | instantiation | 135, 117, 118 | ⊢ |
| : , : , : |
108 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
109 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
110 | instantiation | 135, 125, 119 | ⊢ |
| : , : , : |
111 | theorem | | ⊢ |
| proveit.numbers.negation.pos_times_neg |
112 | instantiation | 120, 121 | ⊢ |
| : |
113 | assumption | | ⊢ |
114 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
115 | instantiation | 135, 122, 123 | ⊢ |
| : , : , : |
116 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
117 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real |
118 | assumption | | ⊢ |
119 | instantiation | 135, 130, 124 | ⊢ |
| : , : , : |
120 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
121 | instantiation | 135, 125, 126 | ⊢ |
| : , : , : |
122 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
123 | instantiation | 135, 127, 128 | ⊢ |
| : , : , : |
124 | instantiation | 135, 133, 129 | ⊢ |
| : , : , : |
125 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
126 | instantiation | 135, 130, 131 | ⊢ |
| : , : , : |
127 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
128 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
129 | instantiation | 135, 136, 132 | ⊢ |
| : , : , : |
130 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
131 | instantiation | 135, 133, 134 | ⊢ |
| : , : , : |
132 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
133 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
134 | instantiation | 135, 136, 137 | ⊢ |
| : , : , : |
135 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
136 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
137 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |