| | step type | requirements | statement |
| 0 | instantiation | 1, 2 | , , , ⊢  |
| | : , :  |
| 1 | reference | 53 | ⊢  |
| 2 | instantiation | 65, 3, 4 | , , , ⊢  |
| | : , : , :  |
| 3 | instantiation | 50, 5 | ⊢  |
| | : , : , :  |
| 4 | instantiation | 6, 7, 8, 9 | , , , ⊢  |
| | : , : , : , :  |
| 5 | instantiation | 50, 10 | ⊢  |
| | : , : , :  |
| 6 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 7 | instantiation | 11, 12, 120, 13, 75, 17, 68, 22, 23 | , , , ⊢  |
| | : , : , : , : , : , : , :  |
| 8 | instantiation | 19, 56, 115, 14, 57, 15, 16, 75, 17, 68, 22, 23, 18* | , , , ⊢  |
| | : , : , : , : , : , :  |
| 9 | instantiation | 19, 120, 115, 20, 21, 29, 68, 22, 23, 24* | , , , ⊢  |
| | : , : , : , : , : , :  |
| 10 | instantiation | 25, 75, 93, 89, 26* | ⊢  |
| | : , :  |
| 11 | theorem | | ⊢  |
| | proveit.numbers.addition.leftward_commutation |
| 12 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 13 | instantiation | 27 | ⊢  |
| | : , : , :  |
| 14 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 15 | instantiation | 91 | ⊢  |
| | : , :  |
| 16 | instantiation | 28 | ⊢  |
| | : , : , : , :  |
| 17 | instantiation | 73, 29 | ⊢  |
| | :  |
| 18 | instantiation | 65, 30, 31, 32* | ⊢  |
| | : , : , :  |
| 19 | theorem | | ⊢  |
| | proveit.numbers.addition.association |
| 20 | instantiation | 91 | ⊢  |
| | : , :  |
| 21 | instantiation | 91 | ⊢  |
| | : , :  |
| 22 | instantiation | 118, 108, 33 | ⊢  |
| | : , : , :  |
| 23 | instantiation | 38, 93, 34 | ⊢  |
| | : , :  |
| 24 | instantiation | 53, 35, 83* | ⊢  |
| | : , :  |
| 25 | theorem | | ⊢  |
| | proveit.numbers.division.div_as_mult |
| 26 | instantiation | 65, 36, 37 | ⊢  |
| | : , : , :  |
| 27 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 28 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 29 | instantiation | 38, 74, 75 | ⊢  |
| | : , :  |
| 30 | instantiation | 50, 39 | ⊢  |
| | : , : , :  |
| 31 | instantiation | 53, 40 | ⊢  |
| | : , :  |
| 32 | instantiation | 41, 117, 42, 112, 43*, 44*, 45* | ⊢  |
| | : , : , : , :  |
| 33 | instantiation | 118, 100, 46 | ⊢  |
| | : , : , :  |
| 34 | instantiation | 118, 108, 47 | ⊢  |
| | : , : , :  |
| 35 | instantiation | 55, 56, 115, 120, 57, 48, 104, 68, 49* | ⊢  |
| | : , : , : , : , : , :  |
| 36 | instantiation | 50, 51 | ⊢  |
| | : , : , :  |
| 37 | instantiation | 52, 75, 74 | ⊢  |
| | : , :  |
| 38 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 39 | instantiation | 53, 54 | ⊢  |
| | : , :  |
| 40 | instantiation | 55, 56, 115, 120, 57, 58, 104, 59, 75, 60* | ⊢  |
| | : , : , : , : , : , :  |
| 41 | theorem | | ⊢  |
| | proveit.numbers.addition.rational_pair_addition |
| 42 | instantiation | 61, 117 | ⊢  |
| | :  |
| 43 | instantiation | 62, 104, 63 | ⊢  |
| | :  |
| 44 | instantiation | 64, 104, 93, 89 | ⊢  |
| | : , :  |
| 45 | instantiation | 65, 66, 67 | ⊢  |
| | : , : , :  |
| 46 | assumption | | ⊢  |
| 47 | assumption | | ⊢  |
| 48 | instantiation | 91 | ⊢  |
| | : , :  |
| 49 | instantiation | 92, 68 | ⊢  |
| | :  |
| 50 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 51 | instantiation | 69, 70, 76, 71* | ⊢  |
| | : , :  |
| 52 | theorem | | ⊢  |
| | proveit.numbers.multiplication.commutation |
| 53 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 54 | instantiation | 72, 74, 75 | ⊢  |
| | : , :  |
| 55 | theorem | | ⊢  |
| | proveit.numbers.multiplication.distribute_through_sum |
| 56 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 57 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 58 | instantiation | 91 | ⊢  |
| | : , :  |
| 59 | instantiation | 73, 74 | ⊢  |
| | :  |
| 60 | instantiation | 92, 75 | ⊢  |
| | :  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.negation.int_closure |
| 62 | theorem | | ⊢  |
| | proveit.numbers.division.frac_cancel_complete |
| 63 | instantiation | 99, 76 | ⊢  |
| | :  |
| 64 | theorem | | ⊢  |
| | proveit.numbers.division.neg_frac_neg_numerator |
| 65 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 66 | instantiation | 77, 115, 78, 79, 80, 81 | ⊢  |
| | : , : , : , :  |
| 67 | instantiation | 82, 104, 93, 83 | ⊢  |
| | : , : , :  |
| 68 | instantiation | 118, 108, 84 | ⊢  |
| | : , : , :  |
| 69 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.neg_power_as_div |
| 70 | instantiation | 118, 85, 86 | ⊢  |
| | : , : , :  |
| 71 | instantiation | 87, 93 | ⊢  |
| | :  |
| 72 | theorem | | ⊢  |
| | proveit.numbers.negation.neg_times_pos |
| 73 | theorem | | ⊢  |
| | proveit.numbers.negation.complex_closure |
| 74 | instantiation | 88, 104, 93, 89 | ⊢  |
| | : , :  |
| 75 | instantiation | 118, 108, 90 | ⊢  |
| | : , : , :  |
| 76 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 77 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 78 | instantiation | 91 | ⊢  |
| | : , :  |
| 79 | instantiation | 91 | ⊢  |
| | : , :  |
| 80 | instantiation | 92, 93 | ⊢  |
| | :  |
| 81 | instantiation | 94, 104, 95* | ⊢  |
| | : , :  |
| 82 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.subtract_from_add |
| 83 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 84 | instantiation | 118, 100, 96 | ⊢  |
| | : , : , :  |
| 85 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 86 | instantiation | 118, 97, 98 | ⊢  |
| | : , : , :  |
| 87 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 88 | theorem | | ⊢  |
| | proveit.numbers.division.div_complex_closure |
| 89 | instantiation | 99, 111 | ⊢  |
| | :  |
| 90 | instantiation | 118, 100, 101 | ⊢  |
| | : , : , :  |
| 91 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 92 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 93 | instantiation | 118, 108, 102 | ⊢  |
| | : , : , :  |
| 94 | theorem | | ⊢  |
| | proveit.numbers.negation.pos_times_neg |
| 95 | instantiation | 103, 104 | ⊢  |
| | :  |
| 96 | assumption | | ⊢  |
| 97 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 98 | instantiation | 118, 105, 106 | ⊢  |
| | : , : , :  |
| 99 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 100 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_neg_within_real |
| 101 | assumption | | ⊢  |
| 102 | instantiation | 118, 113, 107 | ⊢  |
| | : , : , :  |
| 103 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 104 | instantiation | 118, 108, 109 | ⊢  |
| | : , : , :  |
| 105 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 106 | instantiation | 118, 110, 111 | ⊢  |
| | : , : , :  |
| 107 | instantiation | 118, 116, 112 | ⊢  |
| | : , : , :  |
| 108 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 109 | instantiation | 118, 113, 114 | ⊢  |
| | : , : , :  |
| 110 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 111 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 112 | instantiation | 118, 119, 115 | ⊢  |
| | : , : , :  |
| 113 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 114 | instantiation | 118, 116, 117 | ⊢  |
| | : , : , :  |
| 115 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 116 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 117 | instantiation | 118, 119, 120 | ⊢  |
| | : , : , :  |
| 118 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 119 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 120 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |