| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | , , , ⊢ |
| : , : , : , : |
1 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
2 | instantiation | 5, 6, 97, 7, 60, 11, 56, 16, 17 | , , , ⊢ |
| : , : , : , : , : , : , : |
3 | instantiation | 13, 44, 92, 8, 45, 9, 10, 60, 11, 56, 16, 17, 12* | , , , ⊢ |
| : , : , : , : , : , : |
4 | instantiation | 13, 97, 92, 14, 15, 21, 56, 16, 17, 18* | , , , ⊢ |
| : , : , : , : , : , : |
5 | theorem | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
6 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
7 | instantiation | 19 | ⊢ |
| : , : , : |
8 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
9 | instantiation | 73 | ⊢ |
| : , : |
10 | instantiation | 20 | ⊢ |
| : , : , : , : |
11 | instantiation | 58, 21 | ⊢ |
| : |
12 | instantiation | 53, 22, 23, 24* | ⊢ |
| : , : , : |
13 | theorem | | ⊢ |
| proveit.numbers.addition.association |
14 | instantiation | 73 | ⊢ |
| : , : |
15 | instantiation | 73 | ⊢ |
| : , : |
16 | instantiation | 95, 87, 25 | ⊢ |
| : , : , : |
17 | instantiation | 28, 75, 26 | ⊢ |
| : , : |
18 | instantiation | 41, 27, 68* | ⊢ |
| : , : |
19 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
20 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
21 | instantiation | 28, 59, 60 | ⊢ |
| : , : |
22 | instantiation | 29, 30 | ⊢ |
| : , : , : |
23 | instantiation | 41, 31 | ⊢ |
| : , : |
24 | instantiation | 32, 94, 33, 89, 34*, 35*, 36* | ⊢ |
| : , : , : , : |
25 | instantiation | 95, 81, 37 | ⊢ |
| : , : , : |
26 | instantiation | 95, 87, 38 | ⊢ |
| : , : , : |
27 | instantiation | 43, 44, 92, 97, 45, 39, 85, 56, 40* | ⊢ |
| : , : , : , : , : , : |
28 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
29 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
30 | instantiation | 41, 42 | ⊢ |
| : , : |
31 | instantiation | 43, 44, 92, 97, 45, 46, 85, 47, 60, 48* | ⊢ |
| : , : , : , : , : , : |
32 | theorem | | ⊢ |
| proveit.numbers.addition.rational_pair_addition |
33 | instantiation | 49, 94 | ⊢ |
| : |
34 | instantiation | 50, 85, 51 | ⊢ |
| : |
35 | instantiation | 52, 85, 75, 71 | ⊢ |
| : , : |
36 | instantiation | 53, 54, 55 | ⊢ |
| : , : , : |
37 | assumption | | ⊢ |
38 | assumption | | ⊢ |
39 | instantiation | 73 | ⊢ |
| : , : |
40 | instantiation | 74, 56 | ⊢ |
| : |
41 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
42 | instantiation | 57, 59, 60 | ⊢ |
| : , : |
43 | theorem | | ⊢ |
| proveit.numbers.multiplication.distribute_through_sum |
44 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
45 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
46 | instantiation | 73 | ⊢ |
| : , : |
47 | instantiation | 58, 59 | ⊢ |
| : |
48 | instantiation | 74, 60 | ⊢ |
| : |
49 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
50 | theorem | | ⊢ |
| proveit.numbers.division.frac_cancel_complete |
51 | instantiation | 79, 61 | ⊢ |
| : |
52 | theorem | | ⊢ |
| proveit.numbers.division.neg_frac_neg_numerator |
53 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
54 | instantiation | 62, 92, 63, 64, 65, 66 | ⊢ |
| : , : , : , : |
55 | instantiation | 67, 85, 75, 68 | ⊢ |
| : , : , : |
56 | instantiation | 95, 87, 69 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.negation.neg_times_pos |
58 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
59 | instantiation | 70, 85, 75, 71 | ⊢ |
| : , : |
60 | instantiation | 95, 87, 72 | ⊢ |
| : , : , : |
61 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
62 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
63 | instantiation | 73 | ⊢ |
| : , : |
64 | instantiation | 73 | ⊢ |
| : , : |
65 | instantiation | 74, 75 | ⊢ |
| : |
66 | instantiation | 76, 85, 77* | ⊢ |
| : , : |
67 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
69 | instantiation | 95, 81, 78 | ⊢ |
| : , : , : |
70 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
71 | instantiation | 79, 80 | ⊢ |
| : |
72 | instantiation | 95, 81, 82 | ⊢ |
| : , : , : |
73 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
74 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
75 | instantiation | 95, 87, 83 | ⊢ |
| : , : , : |
76 | theorem | | ⊢ |
| proveit.numbers.negation.pos_times_neg |
77 | instantiation | 84, 85 | ⊢ |
| : |
78 | assumption | | ⊢ |
79 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
80 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
81 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real |
82 | assumption | | ⊢ |
83 | instantiation | 95, 90, 86 | ⊢ |
| : , : , : |
84 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
85 | instantiation | 95, 87, 88 | ⊢ |
| : , : , : |
86 | instantiation | 95, 93, 89 | ⊢ |
| : , : , : |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
88 | instantiation | 95, 90, 91 | ⊢ |
| : , : , : |
89 | instantiation | 95, 96, 92 | ⊢ |
| : , : , : |
90 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
91 | instantiation | 95, 93, 94 | ⊢ |
| : , : , : |
92 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
93 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
94 | instantiation | 95, 96, 97 | ⊢ |
| : , : , : |
95 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
96 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
97 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |