| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , ⊢ |
| : , : , : |
1 | reference | 64 | ⊢ |
2 | instantiation | 49, 4 | ⊢ |
| : , : , : |
3 | instantiation | 5, 6, 7, 8 | , , , ⊢ |
| : , : , : , : |
4 | instantiation | 49, 9 | ⊢ |
| : , : , : |
5 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
6 | instantiation | 10, 11, 119, 12, 74, 16, 67, 21, 22 | , , , ⊢ |
| : , : , : , : , : , : , : |
7 | instantiation | 18, 55, 114, 13, 56, 14, 15, 74, 16, 67, 21, 22, 17* | , , , ⊢ |
| : , : , : , : , : , : |
8 | instantiation | 18, 119, 114, 19, 20, 28, 67, 21, 22, 23* | , , , ⊢ |
| : , : , : , : , : , : |
9 | instantiation | 24, 74, 92, 88, 25* | ⊢ |
| : , : |
10 | theorem | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
11 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
12 | instantiation | 26 | ⊢ |
| : , : , : |
13 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
14 | instantiation | 90 | ⊢ |
| : , : |
15 | instantiation | 27 | ⊢ |
| : , : , : , : |
16 | instantiation | 72, 28 | ⊢ |
| : |
17 | instantiation | 64, 29, 30, 31* | ⊢ |
| : , : , : |
18 | theorem | | ⊢ |
| proveit.numbers.addition.association |
19 | instantiation | 90 | ⊢ |
| : , : |
20 | instantiation | 90 | ⊢ |
| : , : |
21 | instantiation | 117, 107, 32 | ⊢ |
| : , : , : |
22 | instantiation | 37, 92, 33 | ⊢ |
| : , : |
23 | instantiation | 52, 34, 82* | ⊢ |
| : , : |
24 | theorem | | ⊢ |
| proveit.numbers.division.div_as_mult |
25 | instantiation | 64, 35, 36 | ⊢ |
| : , : , : |
26 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
27 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
28 | instantiation | 37, 73, 74 | ⊢ |
| : , : |
29 | instantiation | 49, 38 | ⊢ |
| : , : , : |
30 | instantiation | 52, 39 | ⊢ |
| : , : |
31 | instantiation | 40, 116, 41, 111, 42*, 43*, 44* | ⊢ |
| : , : , : , : |
32 | instantiation | 117, 99, 45 | ⊢ |
| : , : , : |
33 | instantiation | 117, 107, 46 | ⊢ |
| : , : , : |
34 | instantiation | 54, 55, 114, 119, 56, 47, 103, 67, 48* | ⊢ |
| : , : , : , : , : , : |
35 | instantiation | 49, 50 | ⊢ |
| : , : , : |
36 | instantiation | 51, 74, 73 | ⊢ |
| : , : |
37 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
38 | instantiation | 52, 53 | ⊢ |
| : , : |
39 | instantiation | 54, 55, 114, 119, 56, 57, 103, 58, 74, 59* | ⊢ |
| : , : , : , : , : , : |
40 | theorem | | ⊢ |
| proveit.numbers.addition.rational_pair_addition |
41 | instantiation | 60, 116 | ⊢ |
| : |
42 | instantiation | 61, 103, 62 | ⊢ |
| : |
43 | instantiation | 63, 103, 92, 88 | ⊢ |
| : , : |
44 | instantiation | 64, 65, 66 | ⊢ |
| : , : , : |
45 | assumption | | ⊢ |
46 | assumption | | ⊢ |
47 | instantiation | 90 | ⊢ |
| : , : |
48 | instantiation | 91, 67 | ⊢ |
| : |
49 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
50 | instantiation | 68, 69, 75, 70* | ⊢ |
| : , : |
51 | theorem | | ⊢ |
| proveit.numbers.multiplication.commutation |
52 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
53 | instantiation | 71, 73, 74 | ⊢ |
| : , : |
54 | theorem | | ⊢ |
| proveit.numbers.multiplication.distribute_through_sum |
55 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
56 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
57 | instantiation | 90 | ⊢ |
| : , : |
58 | instantiation | 72, 73 | ⊢ |
| : |
59 | instantiation | 91, 74 | ⊢ |
| : |
60 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
61 | theorem | | ⊢ |
| proveit.numbers.division.frac_cancel_complete |
62 | instantiation | 98, 75 | ⊢ |
| : |
63 | theorem | | ⊢ |
| proveit.numbers.division.neg_frac_neg_numerator |
64 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
65 | instantiation | 76, 114, 77, 78, 79, 80 | ⊢ |
| : , : , : , : |
66 | instantiation | 81, 103, 92, 82 | ⊢ |
| : , : , : |
67 | instantiation | 117, 107, 83 | ⊢ |
| : , : , : |
68 | theorem | | ⊢ |
| proveit.numbers.exponentiation.neg_power_as_div |
69 | instantiation | 117, 84, 85 | ⊢ |
| : , : , : |
70 | instantiation | 86, 92 | ⊢ |
| : |
71 | theorem | | ⊢ |
| proveit.numbers.negation.neg_times_pos |
72 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
73 | instantiation | 87, 103, 92, 88 | ⊢ |
| : , : |
74 | instantiation | 117, 107, 89 | ⊢ |
| : , : , : |
75 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
76 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
77 | instantiation | 90 | ⊢ |
| : , : |
78 | instantiation | 90 | ⊢ |
| : , : |
79 | instantiation | 91, 92 | ⊢ |
| : |
80 | instantiation | 93, 103, 94* | ⊢ |
| : , : |
81 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
82 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
83 | instantiation | 117, 99, 95 | ⊢ |
| : , : , : |
84 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
85 | instantiation | 117, 96, 97 | ⊢ |
| : , : , : |
86 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
87 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
88 | instantiation | 98, 110 | ⊢ |
| : |
89 | instantiation | 117, 99, 100 | ⊢ |
| : , : , : |
90 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
91 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
92 | instantiation | 117, 107, 101 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.numbers.negation.pos_times_neg |
94 | instantiation | 102, 103 | ⊢ |
| : |
95 | assumption | | ⊢ |
96 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
97 | instantiation | 117, 104, 105 | ⊢ |
| : , : , : |
98 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
99 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_neg_within_real |
100 | assumption | | ⊢ |
101 | instantiation | 117, 112, 106 | ⊢ |
| : , : , : |
102 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
103 | instantiation | 117, 107, 108 | ⊢ |
| : , : , : |
104 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
105 | instantiation | 117, 109, 110 | ⊢ |
| : , : , : |
106 | instantiation | 117, 115, 111 | ⊢ |
| : , : , : |
107 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
108 | instantiation | 117, 112, 113 | ⊢ |
| : , : , : |
109 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
110 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
111 | instantiation | 117, 118, 114 | ⊢ |
| : , : , : |
112 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
113 | instantiation | 117, 115, 116 | ⊢ |
| : , : , : |
114 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
115 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
116 | instantiation | 117, 118, 119 | ⊢ |
| : , : , : |
117 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
118 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
119 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |