| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , , , ⊢  |
| | : , : , :  |
| 1 | reference | 64 | ⊢  |
| 2 | instantiation | 49, 4 | ⊢  |
| | : , : , :  |
| 3 | instantiation | 5, 6, 7, 8 | , , , ⊢  |
| | : , : , : , :  |
| 4 | instantiation | 49, 9 | ⊢  |
| | : , : , :  |
| 5 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 6 | instantiation | 10, 11, 119, 12, 74, 16, 67, 21, 22 | , , , ⊢  |
| | : , : , : , : , : , : , :  |
| 7 | instantiation | 18, 55, 114, 13, 56, 14, 15, 74, 16, 67, 21, 22, 17* | , , , ⊢  |
| | : , : , : , : , : , :  |
| 8 | instantiation | 18, 119, 114, 19, 20, 28, 67, 21, 22, 23* | , , , ⊢  |
| | : , : , : , : , : , :  |
| 9 | instantiation | 24, 74, 92, 88, 25* | ⊢  |
| | : , :  |
| 10 | theorem | | ⊢  |
| | proveit.numbers.addition.leftward_commutation |
| 11 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 12 | instantiation | 26 | ⊢  |
| | : , : , :  |
| 13 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 14 | instantiation | 90 | ⊢  |
| | : , :  |
| 15 | instantiation | 27 | ⊢  |
| | : , : , : , :  |
| 16 | instantiation | 72, 28 | ⊢  |
| | :  |
| 17 | instantiation | 64, 29, 30, 31* | ⊢  |
| | : , : , :  |
| 18 | theorem | | ⊢  |
| | proveit.numbers.addition.association |
| 19 | instantiation | 90 | ⊢  |
| | : , :  |
| 20 | instantiation | 90 | ⊢  |
| | : , :  |
| 21 | instantiation | 117, 107, 32 | ⊢  |
| | : , : , :  |
| 22 | instantiation | 37, 92, 33 | ⊢  |
| | : , :  |
| 23 | instantiation | 52, 34, 82* | ⊢  |
| | : , :  |
| 24 | theorem | | ⊢  |
| | proveit.numbers.division.div_as_mult |
| 25 | instantiation | 64, 35, 36 | ⊢  |
| | : , : , :  |
| 26 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 27 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 28 | instantiation | 37, 73, 74 | ⊢  |
| | : , :  |
| 29 | instantiation | 49, 38 | ⊢  |
| | : , : , :  |
| 30 | instantiation | 52, 39 | ⊢  |
| | : , :  |
| 31 | instantiation | 40, 116, 41, 111, 42*, 43*, 44* | ⊢  |
| | : , : , : , :  |
| 32 | instantiation | 117, 99, 45 | ⊢  |
| | : , : , :  |
| 33 | instantiation | 117, 107, 46 | ⊢  |
| | : , : , :  |
| 34 | instantiation | 54, 55, 114, 119, 56, 47, 103, 67, 48* | ⊢  |
| | : , : , : , : , : , :  |
| 35 | instantiation | 49, 50 | ⊢  |
| | : , : , :  |
| 36 | instantiation | 51, 74, 73 | ⊢  |
| | : , :  |
| 37 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 38 | instantiation | 52, 53 | ⊢  |
| | : , :  |
| 39 | instantiation | 54, 55, 114, 119, 56, 57, 103, 58, 74, 59* | ⊢  |
| | : , : , : , : , : , :  |
| 40 | theorem | | ⊢  |
| | proveit.numbers.addition.rational_pair_addition |
| 41 | instantiation | 60, 116 | ⊢  |
| | :  |
| 42 | instantiation | 61, 103, 62 | ⊢  |
| | :  |
| 43 | instantiation | 63, 103, 92, 88 | ⊢  |
| | : , :  |
| 44 | instantiation | 64, 65, 66 | ⊢  |
| | : , : , :  |
| 45 | assumption | | ⊢  |
| 46 | assumption | | ⊢  |
| 47 | instantiation | 90 | ⊢  |
| | : , :  |
| 48 | instantiation | 91, 67 | ⊢  |
| | :  |
| 49 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 50 | instantiation | 68, 69, 75, 70* | ⊢  |
| | : , :  |
| 51 | theorem | | ⊢  |
| | proveit.numbers.multiplication.commutation |
| 52 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 53 | instantiation | 71, 73, 74 | ⊢  |
| | : , :  |
| 54 | theorem | | ⊢  |
| | proveit.numbers.multiplication.distribute_through_sum |
| 55 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 56 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 57 | instantiation | 90 | ⊢  |
| | : , :  |
| 58 | instantiation | 72, 73 | ⊢  |
| | :  |
| 59 | instantiation | 91, 74 | ⊢  |
| | :  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.negation.int_closure |
| 61 | theorem | | ⊢  |
| | proveit.numbers.division.frac_cancel_complete |
| 62 | instantiation | 98, 75 | ⊢  |
| | :  |
| 63 | theorem | | ⊢  |
| | proveit.numbers.division.neg_frac_neg_numerator |
| 64 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 65 | instantiation | 76, 114, 77, 78, 79, 80 | ⊢  |
| | : , : , : , :  |
| 66 | instantiation | 81, 103, 92, 82 | ⊢  |
| | : , : , :  |
| 67 | instantiation | 117, 107, 83 | ⊢  |
| | : , : , :  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.neg_power_as_div |
| 69 | instantiation | 117, 84, 85 | ⊢  |
| | : , : , :  |
| 70 | instantiation | 86, 92 | ⊢  |
| | :  |
| 71 | theorem | | ⊢  |
| | proveit.numbers.negation.neg_times_pos |
| 72 | theorem | | ⊢  |
| | proveit.numbers.negation.complex_closure |
| 73 | instantiation | 87, 103, 92, 88 | ⊢  |
| | : , :  |
| 74 | instantiation | 117, 107, 89 | ⊢  |
| | : , : , :  |
| 75 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 76 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 77 | instantiation | 90 | ⊢  |
| | : , :  |
| 78 | instantiation | 90 | ⊢  |
| | : , :  |
| 79 | instantiation | 91, 92 | ⊢  |
| | :  |
| 80 | instantiation | 93, 103, 94* | ⊢  |
| | : , :  |
| 81 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.subtract_from_add |
| 82 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 83 | instantiation | 117, 99, 95 | ⊢  |
| | : , : , :  |
| 84 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 85 | instantiation | 117, 96, 97 | ⊢  |
| | : , : , :  |
| 86 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 87 | theorem | | ⊢  |
| | proveit.numbers.division.div_complex_closure |
| 88 | instantiation | 98, 110 | ⊢  |
| | :  |
| 89 | instantiation | 117, 99, 100 | ⊢  |
| | : , : , :  |
| 90 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 91 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 92 | instantiation | 117, 107, 101 | ⊢  |
| | : , : , :  |
| 93 | theorem | | ⊢  |
| | proveit.numbers.negation.pos_times_neg |
| 94 | instantiation | 102, 103 | ⊢  |
| | :  |
| 95 | assumption | | ⊢  |
| 96 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 97 | instantiation | 117, 104, 105 | ⊢  |
| | : , : , :  |
| 98 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 99 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_neg_within_real |
| 100 | assumption | | ⊢  |
| 101 | instantiation | 117, 112, 106 | ⊢  |
| | : , : , :  |
| 102 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 103 | instantiation | 117, 107, 108 | ⊢  |
| | : , : , :  |
| 104 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 105 | instantiation | 117, 109, 110 | ⊢  |
| | : , : , :  |
| 106 | instantiation | 117, 115, 111 | ⊢  |
| | : , : , :  |
| 107 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 108 | instantiation | 117, 112, 113 | ⊢  |
| | : , : , :  |
| 109 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 110 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 111 | instantiation | 117, 118, 114 | ⊢  |
| | : , : , :  |
| 112 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 113 | instantiation | 117, 115, 116 | ⊢  |
| | : , : , :  |
| 114 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 115 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 116 | instantiation | 117, 118, 119 | ⊢  |
| | : , : , :  |
| 117 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 118 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 119 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |