| step type | requirements | statement |
0 | instantiation | 1, 2 | , , , , , ⊢  |
| : , :  |
1 | reference | 33 | ⊢  |
2 | instantiation | 3, 4, 5, 6, 7, 8, 9, 10, 11 | , , , , , ⊢  |
| : , : , :  |
3 | theorem | | ⊢  |
| proveit.numbers.division.distribute_frac_through_sum |
4 | instantiation | 12, 25, 48, 13, 14 | ⊢  |
| : , :  |
5 | instantiation | 38, 39, 15 | ⊢  |
| : , : , :  |
6 | instantiation | 16, 17, 18, 19 | ⊢  |
| : , : , : , :  |
7 | assumption | | ⊢  |
8 | assumption | | ⊢  |
9 | assumption | | ⊢  |
10 | assumption | | ⊢  |
11 | assumption | | ⊢  |
12 | theorem | | ⊢  |
| proveit.numbers.addition.add_nat_pos_closure |
13 | instantiation | 20, 28, 21 | ⊢  |
| :  |
14 | instantiation | 37, 78, 51 | ⊢  |
| : , : , :  |
15 | instantiation | 38, 22, 23 | ⊢  |
| : , : , :  |
16 | theorem | | ⊢  |
| proveit.logic.equality.four_chain_transitivity |
17 | instantiation | 24, 25, 26, 27, 49, 28, 29, 30* | ⊢  |
| : , : , : , :  |
18 | instantiation | 31, 32, 64 | ⊢  |
| : , :  |
19 | instantiation | 33, 34 | ⊢  |
| : , :  |
20 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nonzero_nat_is_natural_pos |
21 | instantiation | 37, 35, 50 | ⊢  |
| : , : , :  |
22 | instantiation | 36, 53, 73, 54, 55, 63, 64 | ⊢  |
| : , : , : , : , : , : , :  |
23 | instantiation | 52, 85, 73, 53, 55, 54, 64, 63, 56* | ⊢  |
| : , : , : , : , : , :  |
24 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.general_len |
25 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
26 | instantiation | 60 | ⊢  |
| : , : , :  |
27 | instantiation | 60 | ⊢  |
| : , : , :  |
28 | instantiation | 37, 85, 50 | ⊢  |
| : , : , :  |
29 | instantiation | 37, 59, 51 | ⊢  |
| : , : , :  |
30 | instantiation | 38, 39, 40 | ⊢  |
| : , : , :  |
31 | theorem | | ⊢  |
| proveit.numbers.addition.commutation |
32 | instantiation | 83, 70, 41 | ⊢  |
| : , : , :  |
33 | theorem | | ⊢  |
| proveit.logic.equality.equals_reversal |
34 | instantiation | 42, 43 | ⊢  |
| : , :  |
35 | instantiation | 44, 45 | ⊢  |
| :  |
36 | theorem | | ⊢  |
| proveit.numbers.addition.leftward_commutation |
37 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
38 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
39 | instantiation | 46, 47, 48, 49, 50, 51 | ⊢  |
| : , : , : , :  |
40 | instantiation | 52, 53, 73, 85, 54, 55, 63, 64, 56* | ⊢  |
| : , : , : , : , : , :  |
41 | instantiation | 83, 74, 57 | ⊢  |
| : , : , :  |
42 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.range_from1_len |
43 | instantiation | 58, 59, 73 | ⊢  |
| : , :  |
44 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
45 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat1 |
46 | axiom | | ⊢  |
| proveit.core_expr_types.operations.operands_substitution |
47 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
48 | instantiation | 60 | ⊢  |
| : , : , :  |
49 | instantiation | 60 | ⊢  |
| : , : , :  |
50 | instantiation | 61, 63, 65 | ⊢  |
| : , : , :  |
51 | instantiation | 62, 63, 64, 65 | ⊢  |
| : , : , :  |
52 | theorem | | ⊢  |
| proveit.numbers.addition.association |
53 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
54 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
55 | instantiation | 66 | ⊢  |
| : , :  |
56 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_1_1 |
57 | instantiation | 83, 79, 67 | ⊢  |
| : , : , :  |
58 | theorem | | ⊢  |
| proveit.numbers.addition.add_nat_closure_bin |
59 | instantiation | 83, 68, 78 | ⊢  |
| : , : , :  |
60 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
61 | theorem | | ⊢  |
| proveit.numbers.addition.subtraction.add_cancel_triple_12 |
62 | theorem | | ⊢  |
| proveit.numbers.addition.subtraction.add_cancel_triple_32 |
63 | instantiation | 83, 70, 69 | ⊢  |
| : , : , :  |
64 | instantiation | 83, 70, 71 | ⊢  |
| : , : , :  |
65 | instantiation | 72 | ⊢  |
| :  |
66 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
67 | instantiation | 83, 84, 73 | ⊢  |
| : , : , :  |
68 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
69 | instantiation | 83, 74, 75 | ⊢  |
| : , : , :  |
70 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
71 | instantiation | 76, 77, 78 | ⊢  |
| : , : , :  |
72 | axiom | | ⊢  |
| proveit.logic.equality.equals_reflexivity |
73 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
74 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
75 | instantiation | 83, 79, 80 | ⊢  |
| : , : , :  |
76 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.unfold_subset_eq |
77 | instantiation | 81, 82 | ⊢  |
| : , :  |
78 | assumption | | ⊢  |
79 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
80 | instantiation | 83, 84, 85 | ⊢  |
| : , : , :  |
81 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.relax_proper_subset |
82 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
83 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
84 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
85 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |