| step type | requirements | statement |
0 | instantiation | 1, 2 | , , , , , ⊢ |
| : , : |
1 | reference | 33 | ⊢ |
2 | instantiation | 3, 4, 5, 6, 7, 8, 9, 10, 11 | , , , , , ⊢ |
| : , : , : |
3 | theorem | | ⊢ |
| proveit.numbers.division.distribute_frac_through_sum |
4 | instantiation | 12, 25, 48, 13, 14 | ⊢ |
| : , : |
5 | instantiation | 38, 39, 15 | ⊢ |
| : , : , : |
6 | instantiation | 16, 17, 18, 19 | ⊢ |
| : , : , : , : |
7 | assumption | | ⊢ |
8 | assumption | | ⊢ |
9 | assumption | | ⊢ |
10 | assumption | | ⊢ |
11 | assumption | | ⊢ |
12 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_closure |
13 | instantiation | 20, 28, 21 | ⊢ |
| : |
14 | instantiation | 37, 78, 51 | ⊢ |
| : , : , : |
15 | instantiation | 38, 22, 23 | ⊢ |
| : , : , : |
16 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
17 | instantiation | 24, 25, 26, 27, 49, 28, 29, 30* | ⊢ |
| : , : , : , : |
18 | instantiation | 31, 32, 64 | ⊢ |
| : , : |
19 | instantiation | 33, 34 | ⊢ |
| : , : |
20 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonzero_nat_is_natural_pos |
21 | instantiation | 37, 35, 50 | ⊢ |
| : , : , : |
22 | instantiation | 36, 53, 73, 54, 55, 63, 64 | ⊢ |
| : , : , : , : , : , : , : |
23 | instantiation | 52, 85, 73, 53, 55, 54, 64, 63, 56* | ⊢ |
| : , : , : , : , : , : |
24 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.general_len |
25 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
26 | instantiation | 60 | ⊢ |
| : , : , : |
27 | instantiation | 60 | ⊢ |
| : , : , : |
28 | instantiation | 37, 85, 50 | ⊢ |
| : , : , : |
29 | instantiation | 37, 59, 51 | ⊢ |
| : , : , : |
30 | instantiation | 38, 39, 40 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
32 | instantiation | 83, 70, 41 | ⊢ |
| : , : , : |
33 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
34 | instantiation | 42, 43 | ⊢ |
| : , : |
35 | instantiation | 44, 45 | ⊢ |
| : |
36 | theorem | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
37 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
38 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
39 | instantiation | 46, 47, 48, 49, 50, 51 | ⊢ |
| : , : , : , : |
40 | instantiation | 52, 53, 73, 85, 54, 55, 63, 64, 56* | ⊢ |
| : , : , : , : , : , : |
41 | instantiation | 83, 74, 57 | ⊢ |
| : , : , : |
42 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len |
43 | instantiation | 58, 59, 73 | ⊢ |
| : , : |
44 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
46 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
47 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
48 | instantiation | 60 | ⊢ |
| : , : , : |
49 | instantiation | 60 | ⊢ |
| : , : , : |
50 | instantiation | 61, 63, 65 | ⊢ |
| : , : , : |
51 | instantiation | 62, 63, 64, 65 | ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.numbers.addition.association |
53 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
54 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
55 | instantiation | 66 | ⊢ |
| : , : |
56 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
57 | instantiation | 83, 79, 67 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_closure_bin |
59 | instantiation | 83, 68, 78 | ⊢ |
| : , : , : |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
61 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_12 |
62 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_32 |
63 | instantiation | 83, 70, 69 | ⊢ |
| : , : , : |
64 | instantiation | 83, 70, 71 | ⊢ |
| : , : , : |
65 | instantiation | 72 | ⊢ |
| : |
66 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
67 | instantiation | 83, 84, 73 | ⊢ |
| : , : , : |
68 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
69 | instantiation | 83, 74, 75 | ⊢ |
| : , : , : |
70 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
71 | instantiation | 76, 77, 78 | ⊢ |
| : , : , : |
72 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
73 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
74 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
75 | instantiation | 83, 79, 80 | ⊢ |
| : , : , : |
76 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
77 | instantiation | 81, 82 | ⊢ |
| : , : |
78 | assumption | | ⊢ |
79 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
80 | instantiation | 83, 84, 85 | ⊢ |
| : , : , : |
81 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
82 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
83 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
84 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
85 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |