| | step type | requirements | statement |
| 0 | instantiation | 1, 2 | , , , , , ⊢  |
| | : , :  |
| 1 | reference | 33 | ⊢  |
| 2 | instantiation | 3, 4, 5, 6, 7, 8, 9, 10, 11 | , , , , , ⊢  |
| | : , : , :  |
| 3 | theorem | | ⊢  |
| | proveit.numbers.division.distribute_frac_through_sum |
| 4 | instantiation | 12, 25, 48, 13, 14 | ⊢  |
| | : , :  |
| 5 | instantiation | 38, 39, 15 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 16, 17, 18, 19 | ⊢  |
| | : , : , : , :  |
| 7 | assumption | | ⊢  |
| 8 | assumption | | ⊢  |
| 9 | assumption | | ⊢  |
| 10 | assumption | | ⊢  |
| 11 | assumption | | ⊢  |
| 12 | theorem | | ⊢  |
| | proveit.numbers.addition.add_nat_pos_closure |
| 13 | instantiation | 20, 28, 21 | ⊢  |
| | :  |
| 14 | instantiation | 37, 78, 51 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 38, 22, 23 | ⊢  |
| | : , : , :  |
| 16 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 17 | instantiation | 24, 25, 26, 27, 49, 28, 29, 30* | ⊢  |
| | : , : , : , :  |
| 18 | instantiation | 31, 32, 64 | ⊢  |
| | : , :  |
| 19 | instantiation | 33, 34 | ⊢  |
| | : , :  |
| 20 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nonzero_nat_is_natural_pos |
| 21 | instantiation | 37, 35, 50 | ⊢  |
| | : , : , :  |
| 22 | instantiation | 36, 53, 73, 54, 55, 63, 64 | ⊢  |
| | : , : , : , : , : , : , :  |
| 23 | instantiation | 52, 85, 73, 53, 55, 54, 64, 63, 56* | ⊢  |
| | : , : , : , : , : , :  |
| 24 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.general_len |
| 25 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 26 | instantiation | 60 | ⊢  |
| | : , : , :  |
| 27 | instantiation | 60 | ⊢  |
| | : , : , :  |
| 28 | instantiation | 37, 85, 50 | ⊢  |
| | : , : , :  |
| 29 | instantiation | 37, 59, 51 | ⊢  |
| | : , : , :  |
| 30 | instantiation | 38, 39, 40 | ⊢  |
| | : , : , :  |
| 31 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 32 | instantiation | 83, 70, 41 | ⊢  |
| | : , : , :  |
| 33 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 34 | instantiation | 42, 43 | ⊢  |
| | : , :  |
| 35 | instantiation | 44, 45 | ⊢  |
| | :  |
| 36 | theorem | | ⊢  |
| | proveit.numbers.addition.leftward_commutation |
| 37 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 38 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 39 | instantiation | 46, 47, 48, 49, 50, 51 | ⊢  |
| | : , : , : , :  |
| 40 | instantiation | 52, 53, 73, 85, 54, 55, 63, 64, 56* | ⊢  |
| | : , : , : , : , : , :  |
| 41 | instantiation | 83, 74, 57 | ⊢  |
| | : , : , :  |
| 42 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.range_from1_len |
| 43 | instantiation | 58, 59, 73 | ⊢  |
| | : , :  |
| 44 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 45 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 46 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 47 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 48 | instantiation | 60 | ⊢  |
| | : , : , :  |
| 49 | instantiation | 60 | ⊢  |
| | : , : , :  |
| 50 | instantiation | 61, 63, 65 | ⊢  |
| | : , : , :  |
| 51 | instantiation | 62, 63, 64, 65 | ⊢  |
| | : , : , :  |
| 52 | theorem | | ⊢  |
| | proveit.numbers.addition.association |
| 53 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 54 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 55 | instantiation | 66 | ⊢  |
| | : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 57 | instantiation | 83, 79, 67 | ⊢  |
| | : , : , :  |
| 58 | theorem | | ⊢  |
| | proveit.numbers.addition.add_nat_closure_bin |
| 59 | instantiation | 83, 68, 78 | ⊢  |
| | : , : , :  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 61 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_12 |
| 62 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_32 |
| 63 | instantiation | 83, 70, 69 | ⊢  |
| | : , : , :  |
| 64 | instantiation | 83, 70, 71 | ⊢  |
| | : , : , :  |
| 65 | instantiation | 72 | ⊢  |
| | :  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 67 | instantiation | 83, 84, 73 | ⊢  |
| | : , : , :  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
| 69 | instantiation | 83, 74, 75 | ⊢  |
| | : , : , :  |
| 70 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 71 | instantiation | 76, 77, 78 | ⊢  |
| | : , : , :  |
| 72 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 73 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 74 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 75 | instantiation | 83, 79, 80 | ⊢  |
| | : , : , :  |
| 76 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 77 | instantiation | 81, 82 | ⊢  |
| | : , :  |
| 78 | assumption | | ⊢  |
| 79 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 80 | instantiation | 83, 84, 85 | ⊢  |
| | : , : , :  |
| 81 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 82 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
| 83 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 84 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 85 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |