| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9 | , , , , , ⊢ |
| : , : , : |
1 | theorem | | ⊢ |
| proveit.numbers.division.distribute_frac_through_sum |
2 | instantiation | 10, 23, 46, 11, 12 | ⊢ |
| : , : |
3 | instantiation | 36, 37, 13 | ⊢ |
| : , : , : |
4 | instantiation | 14, 15, 16, 17 | ⊢ |
| : , : , : , : |
5 | assumption | | ⊢ |
6 | assumption | | ⊢ |
7 | assumption | | ⊢ |
8 | assumption | | ⊢ |
9 | assumption | | ⊢ |
10 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_closure |
11 | instantiation | 18, 26, 19 | ⊢ |
| : |
12 | instantiation | 35, 76, 49 | ⊢ |
| : , : , : |
13 | instantiation | 36, 20, 21 | ⊢ |
| : , : , : |
14 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
15 | instantiation | 22, 23, 24, 25, 47, 26, 27, 28* | ⊢ |
| : , : , : , : |
16 | instantiation | 29, 30, 62 | ⊢ |
| : , : |
17 | instantiation | 31, 32 | ⊢ |
| : , : |
18 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonzero_nat_is_natural_pos |
19 | instantiation | 35, 33, 48 | ⊢ |
| : , : , : |
20 | instantiation | 34, 51, 71, 52, 53, 61, 62 | ⊢ |
| : , : , : , : , : , : , : |
21 | instantiation | 50, 83, 71, 51, 53, 52, 62, 61, 54* | ⊢ |
| : , : , : , : , : , : |
22 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.general_len |
23 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
24 | instantiation | 58 | ⊢ |
| : , : , : |
25 | instantiation | 58 | ⊢ |
| : , : , : |
26 | instantiation | 35, 83, 48 | ⊢ |
| : , : , : |
27 | instantiation | 35, 57, 49 | ⊢ |
| : , : , : |
28 | instantiation | 36, 37, 38 | ⊢ |
| : , : , : |
29 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
30 | instantiation | 81, 68, 39 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
32 | instantiation | 40, 41 | ⊢ |
| : , : |
33 | instantiation | 42, 43 | ⊢ |
| : |
34 | theorem | | ⊢ |
| proveit.numbers.addition.leftward_commutation |
35 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
36 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
37 | instantiation | 44, 45, 46, 47, 48, 49 | ⊢ |
| : , : , : , : |
38 | instantiation | 50, 51, 71, 83, 52, 53, 61, 62, 54* | ⊢ |
| : , : , : , : , : , : |
39 | instantiation | 81, 72, 55 | ⊢ |
| : , : , : |
40 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len |
41 | instantiation | 56, 57, 71 | ⊢ |
| : , : |
42 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
43 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
44 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
46 | instantiation | 58 | ⊢ |
| : , : , : |
47 | instantiation | 58 | ⊢ |
| : , : , : |
48 | instantiation | 59, 61, 63 | ⊢ |
| : , : , : |
49 | instantiation | 60, 61, 62, 63 | ⊢ |
| : , : , : |
50 | theorem | | ⊢ |
| proveit.numbers.addition.association |
51 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
52 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
53 | instantiation | 64 | ⊢ |
| : , : |
54 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
55 | instantiation | 81, 77, 65 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_closure_bin |
57 | instantiation | 81, 66, 76 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
59 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_12 |
60 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_32 |
61 | instantiation | 81, 68, 67 | ⊢ |
| : , : , : |
62 | instantiation | 81, 68, 69 | ⊢ |
| : , : , : |
63 | instantiation | 70 | ⊢ |
| : |
64 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
65 | instantiation | 81, 82, 71 | ⊢ |
| : , : , : |
66 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
67 | instantiation | 81, 72, 73 | ⊢ |
| : , : , : |
68 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
69 | instantiation | 74, 75, 76 | ⊢ |
| : , : , : |
70 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
71 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
72 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
73 | instantiation | 81, 77, 78 | ⊢ |
| : , : , : |
74 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
75 | instantiation | 79, 80 | ⊢ |
| : , : |
76 | assumption | | ⊢ |
77 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
78 | instantiation | 81, 82, 83 | ⊢ |
| : , : , : |
79 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
80 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
81 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
82 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
83 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |