| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9 | , , , , , ⊢  |
| | : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.numbers.division.distribute_frac_through_sum |
| 2 | instantiation | 10, 23, 46, 11, 12 | ⊢  |
| | : , :  |
| 3 | instantiation | 36, 37, 13 | ⊢  |
| | : , : , :  |
| 4 | instantiation | 14, 15, 16, 17 | ⊢  |
| | : , : , : , :  |
| 5 | assumption | | ⊢  |
| 6 | assumption | | ⊢  |
| 7 | assumption | | ⊢  |
| 8 | assumption | | ⊢  |
| 9 | assumption | | ⊢  |
| 10 | theorem | | ⊢  |
| | proveit.numbers.addition.add_nat_pos_closure |
| 11 | instantiation | 18, 26, 19 | ⊢  |
| | :  |
| 12 | instantiation | 35, 76, 49 | ⊢  |
| | : , : , :  |
| 13 | instantiation | 36, 20, 21 | ⊢  |
| | : , : , :  |
| 14 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 15 | instantiation | 22, 23, 24, 25, 47, 26, 27, 28* | ⊢  |
| | : , : , : , :  |
| 16 | instantiation | 29, 30, 62 | ⊢  |
| | : , :  |
| 17 | instantiation | 31, 32 | ⊢  |
| | : , :  |
| 18 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nonzero_nat_is_natural_pos |
| 19 | instantiation | 35, 33, 48 | ⊢  |
| | : , : , :  |
| 20 | instantiation | 34, 51, 71, 52, 53, 61, 62 | ⊢  |
| | : , : , : , : , : , : , :  |
| 21 | instantiation | 50, 83, 71, 51, 53, 52, 62, 61, 54* | ⊢  |
| | : , : , : , : , : , :  |
| 22 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.general_len |
| 23 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 24 | instantiation | 58 | ⊢  |
| | : , : , :  |
| 25 | instantiation | 58 | ⊢  |
| | : , : , :  |
| 26 | instantiation | 35, 83, 48 | ⊢  |
| | : , : , :  |
| 27 | instantiation | 35, 57, 49 | ⊢  |
| | : , : , :  |
| 28 | instantiation | 36, 37, 38 | ⊢  |
| | : , : , :  |
| 29 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 30 | instantiation | 81, 68, 39 | ⊢  |
| | : , : , :  |
| 31 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 32 | instantiation | 40, 41 | ⊢  |
| | : , :  |
| 33 | instantiation | 42, 43 | ⊢  |
| | :  |
| 34 | theorem | | ⊢  |
| | proveit.numbers.addition.leftward_commutation |
| 35 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 36 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 37 | instantiation | 44, 45, 46, 47, 48, 49 | ⊢  |
| | : , : , : , :  |
| 38 | instantiation | 50, 51, 71, 83, 52, 53, 61, 62, 54* | ⊢  |
| | : , : , : , : , : , :  |
| 39 | instantiation | 81, 72, 55 | ⊢  |
| | : , : , :  |
| 40 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.range_from1_len |
| 41 | instantiation | 56, 57, 71 | ⊢  |
| | : , :  |
| 42 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 43 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 44 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 45 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 46 | instantiation | 58 | ⊢  |
| | : , : , :  |
| 47 | instantiation | 58 | ⊢  |
| | : , : , :  |
| 48 | instantiation | 59, 61, 63 | ⊢  |
| | : , : , :  |
| 49 | instantiation | 60, 61, 62, 63 | ⊢  |
| | : , : , :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.addition.association |
| 51 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 52 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 53 | instantiation | 64 | ⊢  |
| | : , :  |
| 54 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_1 |
| 55 | instantiation | 81, 77, 65 | ⊢  |
| | : , : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.addition.add_nat_closure_bin |
| 57 | instantiation | 81, 66, 76 | ⊢  |
| | : , : , :  |
| 58 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 59 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_12 |
| 60 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_32 |
| 61 | instantiation | 81, 68, 67 | ⊢  |
| | : , : , :  |
| 62 | instantiation | 81, 68, 69 | ⊢  |
| | : , : , :  |
| 63 | instantiation | 70 | ⊢  |
| | :  |
| 64 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 65 | instantiation | 81, 82, 71 | ⊢  |
| | : , : , :  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
| 67 | instantiation | 81, 72, 73 | ⊢  |
| | : , : , :  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 69 | instantiation | 74, 75, 76 | ⊢  |
| | : , : , :  |
| 70 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 71 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 72 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 73 | instantiation | 81, 77, 78 | ⊢  |
| | : , : , :  |
| 74 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 75 | instantiation | 79, 80 | ⊢  |
| | : , :  |
| 76 | assumption | | ⊢  |
| 77 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 78 | instantiation | 81, 82, 83 | ⊢  |
| | : , : , :  |
| 79 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 80 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
| 81 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 82 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 83 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| *equality replacement requirements |