| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9 | , , , , , ⊢  |
| : , : , :  |
1 | theorem | | ⊢  |
| proveit.numbers.division.distribute_frac_through_sum |
2 | instantiation | 10, 23, 46, 11, 12 | ⊢  |
| : , :  |
3 | instantiation | 36, 37, 13 | ⊢  |
| : , : , :  |
4 | instantiation | 14, 15, 16, 17 | ⊢  |
| : , : , : , :  |
5 | assumption | | ⊢  |
6 | assumption | | ⊢  |
7 | assumption | | ⊢  |
8 | assumption | | ⊢  |
9 | assumption | | ⊢  |
10 | theorem | | ⊢  |
| proveit.numbers.addition.add_nat_pos_closure |
11 | instantiation | 18, 26, 19 | ⊢  |
| :  |
12 | instantiation | 35, 76, 49 | ⊢  |
| : , : , :  |
13 | instantiation | 36, 20, 21 | ⊢  |
| : , : , :  |
14 | theorem | | ⊢  |
| proveit.logic.equality.four_chain_transitivity |
15 | instantiation | 22, 23, 24, 25, 47, 26, 27, 28* | ⊢  |
| : , : , : , :  |
16 | instantiation | 29, 30, 62 | ⊢  |
| : , :  |
17 | instantiation | 31, 32 | ⊢  |
| : , :  |
18 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nonzero_nat_is_natural_pos |
19 | instantiation | 35, 33, 48 | ⊢  |
| : , : , :  |
20 | instantiation | 34, 51, 71, 52, 53, 61, 62 | ⊢  |
| : , : , : , : , : , : , :  |
21 | instantiation | 50, 83, 71, 51, 53, 52, 62, 61, 54* | ⊢  |
| : , : , : , : , : , :  |
22 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.general_len |
23 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
24 | instantiation | 58 | ⊢  |
| : , : , :  |
25 | instantiation | 58 | ⊢  |
| : , : , :  |
26 | instantiation | 35, 83, 48 | ⊢  |
| : , : , :  |
27 | instantiation | 35, 57, 49 | ⊢  |
| : , : , :  |
28 | instantiation | 36, 37, 38 | ⊢  |
| : , : , :  |
29 | theorem | | ⊢  |
| proveit.numbers.addition.commutation |
30 | instantiation | 81, 68, 39 | ⊢  |
| : , : , :  |
31 | theorem | | ⊢  |
| proveit.logic.equality.equals_reversal |
32 | instantiation | 40, 41 | ⊢  |
| : , :  |
33 | instantiation | 42, 43 | ⊢  |
| :  |
34 | theorem | | ⊢  |
| proveit.numbers.addition.leftward_commutation |
35 | theorem | | ⊢  |
| proveit.logic.equality.sub_left_side_into |
36 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
37 | instantiation | 44, 45, 46, 47, 48, 49 | ⊢  |
| : , : , : , :  |
38 | instantiation | 50, 51, 71, 83, 52, 53, 61, 62, 54* | ⊢  |
| : , : , : , : , : , :  |
39 | instantiation | 81, 72, 55 | ⊢  |
| : , : , :  |
40 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.range_from1_len |
41 | instantiation | 56, 57, 71 | ⊢  |
| : , :  |
42 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
43 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat1 |
44 | axiom | | ⊢  |
| proveit.core_expr_types.operations.operands_substitution |
45 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
46 | instantiation | 58 | ⊢  |
| : , : , :  |
47 | instantiation | 58 | ⊢  |
| : , : , :  |
48 | instantiation | 59, 61, 63 | ⊢  |
| : , : , :  |
49 | instantiation | 60, 61, 62, 63 | ⊢  |
| : , : , :  |
50 | theorem | | ⊢  |
| proveit.numbers.addition.association |
51 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
52 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
53 | instantiation | 64 | ⊢  |
| : , :  |
54 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_1_1 |
55 | instantiation | 81, 77, 65 | ⊢  |
| : , : , :  |
56 | theorem | | ⊢  |
| proveit.numbers.addition.add_nat_closure_bin |
57 | instantiation | 81, 66, 76 | ⊢  |
| : , : , :  |
58 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
59 | theorem | | ⊢  |
| proveit.numbers.addition.subtraction.add_cancel_triple_12 |
60 | theorem | | ⊢  |
| proveit.numbers.addition.subtraction.add_cancel_triple_32 |
61 | instantiation | 81, 68, 67 | ⊢  |
| : , : , :  |
62 | instantiation | 81, 68, 69 | ⊢  |
| : , : , :  |
63 | instantiation | 70 | ⊢  |
| :  |
64 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
65 | instantiation | 81, 82, 71 | ⊢  |
| : , : , :  |
66 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
67 | instantiation | 81, 72, 73 | ⊢  |
| : , : , :  |
68 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
69 | instantiation | 74, 75, 76 | ⊢  |
| : , : , :  |
70 | axiom | | ⊢  |
| proveit.logic.equality.equals_reflexivity |
71 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
72 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
73 | instantiation | 81, 77, 78 | ⊢  |
| : , : , :  |
74 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.unfold_subset_eq |
75 | instantiation | 79, 80 | ⊢  |
| : , :  |
76 | assumption | | ⊢  |
77 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
78 | instantiation | 81, 82, 83 | ⊢  |
| : , : , :  |
79 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.relax_proper_subset |
80 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
81 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
82 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
83 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |