logo

Expression of type Forall

from the theory of proveit.numbers.division

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, IndexedVar, Variable, n, x, y
from proveit.core_expr_types import x_1_to_n
from proveit.logic import Equals, Forall, NotEquals
from proveit.numbers import Add, Complex, NaturalPos, frac, one, zero
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
expr = Forall(instance_param_or_params = [n], instance_expr = Forall(instance_param_or_params = [x_1_to_n, y], instance_expr = Equals(frac(Add(x_1_to_n), y), Add(ExprRange(sub_expr1, frac(IndexedVar(x, sub_expr1), y), one, n))), domain = Complex, condition = NotEquals(y, zero)), domain = NaturalPos)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\forall_{n \in \mathbb{N}^+}~\left[\forall_{x_{1}, x_{2}, \ldots, x_{n}, y \in \mathbb{C}~|~y \neq 0}~\left(\frac{x_{1} +  x_{2} +  \ldots +  x_{n}}{y} = \left(\frac{x_{1}}{y} +  \frac{x_{2}}{y} +  \ldots +  \frac{x_{n}}{y}\right)\right)\right]
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
with_wrappingIf 'True', wrap the Expression after the parametersNoneNone/False('with_wrapping',)
condition_wrappingWrap 'before' or 'after' the condition (or None).NoneNone/False('with_wrap_after_condition', 'with_wrap_before_condition')
wrap_paramsIf 'True', wraps every two parameters AND wraps the Expression after the parametersNoneNone/False('with_params',)
justificationjustify to the 'left', 'center', or 'right' in the array cellscentercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 7
operand: 2
1ExprTuple2
2Lambdaparameter: 45
body: 4
3ExprTuple45
4Conditionalvalue: 5
condition: 6
5Operationoperator: 7
operand: 10
6Operationoperator: 38
operands: 9
7Literal
8ExprTuple10
9ExprTuple45, 11
10Lambdaparameters: 12
body: 13
11Literal
12ExprTuple40, 49
13Conditionalvalue: 14
condition: 15
14Operationoperator: 16
operands: 17
15Operationoperator: 18
operands: 19
16Literal
17ExprTuple20, 21
18Literal
19ExprTuple22, 23, 24
20Operationoperator: 46
operands: 25
21Operationoperator: 35
operands: 26
22ExprRangelambda_map: 27
start_index: 44
end_index: 45
23Operationoperator: 38
operands: 28
24Operationoperator: 29
operands: 30
25ExprTuple31, 49
26ExprTuple32
27Lambdaparameter: 52
body: 33
28ExprTuple49, 42
29Literal
30ExprTuple49, 34
31Operationoperator: 35
operands: 36
32ExprRangelambda_map: 37
start_index: 44
end_index: 45
33Operationoperator: 38
operands: 39
34Literal
35Literal
36ExprTuple40
37Lambdaparameter: 52
body: 41
38Literal
39ExprTuple48, 42
40ExprRangelambda_map: 43
start_index: 44
end_index: 45
41Operationoperator: 46
operands: 47
42Literal
43Lambdaparameter: 52
body: 48
44Literal
45Variable
46Literal
47ExprTuple48, 49
48IndexedVarvariable: 50
index: 52
49Variable
50Variable
51ExprTuple52
52Variable