logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4, 5  ⊢  
  : , :
1theorem  ⊢  
 proveit.numbers.addition.add_nat_pos_closure
2theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat3
3instantiation6  ⊢  
  : , : , :
4instantiation7, 8, 9  ⊢  
  :
5instantiation11, 27, 10  ⊢  
  : , : , :
6theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_3_typical_eq
7theorem  ⊢  
 proveit.numbers.number_sets.integers.nonzero_nat_is_natural_pos
8instantiation11, 36, 13  ⊢  
  : , : , :
9instantiation11, 12, 13  ⊢  
  : , : , :
10instantiation14, 19, 15, 20  ⊢  
  : , : , :
11theorem  ⊢  
 proveit.logic.equality.sub_left_side_into
12instantiation16, 17  ⊢  
  :
13instantiation18, 19, 20  ⊢  
  : , : , :
14theorem  ⊢  
 proveit.numbers.addition.subtraction.add_cancel_triple_32
15instantiation34, 22, 21  ⊢  
  : , : , :
16theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
17theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
18theorem  ⊢  
 proveit.numbers.addition.subtraction.add_cancel_triple_12
19instantiation34, 22, 23  ⊢  
  : , : , :
20instantiation24  ⊢  
  :
21instantiation25, 26, 27  ⊢  
  : , : , :
22theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
23instantiation34, 28, 29  ⊢  
  : , : , :
24axiom  ⊢  
 proveit.logic.equality.equals_reflexivity
25theorem  ⊢  
 proveit.logic.sets.inclusion.unfold_subset_eq
26instantiation30, 31  ⊢  
  : , :
27assumption  ⊢  
28theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
29instantiation34, 32, 33  ⊢  
  : , : , :
30theorem  ⊢  
 proveit.logic.sets.inclusion.relax_proper_subset
31theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.nat_pos_within_real
32theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
33instantiation34, 35, 36  ⊢  
  : , : , :
34theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
35theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
36theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1