| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | reference | 10 | ⊢ |
2 | generalization | 4 | ⊢ |
3 | instantiation | 5 | ⊢ |
| : , : |
4 | modus ponens | 6, 7 | ⊢ |
5 | axiom | | ⊢ |
| proveit.logic.sets.inclusion.subset_eq_def |
6 | instantiation | 10, 8, 9 | ⊢ |
| : , : , : |
7 | assumption | | ⊢ |
8 | instantiation | 10, 11, 12 | ⊢ |
| : , : , : |
9 | instantiation | 16, 13, 14 | ⊢ |
| : , : , : |
10 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
11 | deduction | 15 | ⊢ |
12 | instantiation | 16, 32, 17 | ⊢ |
| : , : , : |
13 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
14 | instantiation | 18 | ⊢ |
| : , : , : , : , : |
15 | instantiation | 21, 19, 20 | ⊢ |
| : , : , : |
16 | axiom | | ⊢ |
| proveit.logic.sets.enumeration.enum_set_def |
17 | instantiation | 42 | ⊢ |
| : , : , : |
18 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
19 | instantiation | 21, 22, 23 | ⊢ |
| : , : , : |
20 | instantiation | 27, 32, 36, 39, 24, 41, 28, 50, 29, 30, 51 | ⊢ |
| : , : , : , : , : , : , : |
21 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
22 | instantiation | 31, 32, 38, 39, 33, 25, 41, 26 | ⊢ |
| : , : , : , : , : , : |
23 | instantiation | 27, 36, 38, 35, 28, 29, 30, 50, 51 | ⊢ |
| : , : , : , : , : , : , : |
24 | instantiation | 42 | ⊢ |
| : , : , : |
25 | instantiation | 46 | ⊢ |
| : , : |
26 | instantiation | 31, 39, 32, 36, 41, 33, 34 | ⊢ |
| : , : , : , : , : , : |
27 | theorem | | ⊢ |
| proveit.logic.booleans.disjunction.leftward_commutation |
28 | instantiation | 37, 39, 38, 41, 35, 44 | ⊢ |
| : , : , : , : , : |
29 | instantiation | 37, 36, 44 | ⊢ |
| : , : , : , : , : |
30 | instantiation | 37, 38, 39, 40, 41, 44 | ⊢ |
| : , : , : , : , : |
31 | theorem | | ⊢ |
| proveit.logic.booleans.disjunction.disassociate |
32 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
33 | instantiation | 42 | ⊢ |
| : , : , : |
34 | instantiation | 43, 44, 45, 48 | ⊢ |
| : , : |
35 | instantiation | 46 | ⊢ |
| : , : |
36 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
37 | theorem | | ⊢ |
| proveit.logic.booleans.disjunction.each_is_bool |
38 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
39 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
40 | instantiation | 46 | ⊢ |
| : , : |
41 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
42 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
43 | theorem | | ⊢ |
| proveit.logic.booleans.disjunction.or_if_left |
44 | instantiation | 47, 48 | ⊢ |
| : |
45 | instantiation | 49, 50, 51 | ⊢ |
| : , : |
46 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
47 | theorem | | ⊢ |
| proveit.logic.booleans.in_bool_if_true |
48 | assumption | | ⊢ |
49 | theorem | | ⊢ |
| proveit.logic.booleans.disjunction.binary_closure |
50 | instantiation | 52 | ⊢ |
| : , : |
51 | instantiation | 52 | ⊢ |
| : , : |
52 | axiom | | ⊢ |
| proveit.logic.equality.equality_in_bool |