logo
In [1]:
import proveit
from proveit import A
from proveit.logic.booleans import true_is_bool
theory = proveit.Theory() # the theorem's theory
In [2]:
%proving in_bool_if_true
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
in_bool_if_true:
(see dependencies)
in_bool_if_true may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [3]:
true_is_bool
In [4]:
AeqT = A.evaluation(assumptions=[A])
AeqT:  ⊢  
In [5]:
AeqT.sub_left_side_into(true_is_bool)
In [6]:
%qed
proveit.logic.booleans.in_bool_if_true has been proven.
Out[6]:
 step typerequirementsstatement
0generalization1  ⊢  
1instantiation2, 3, 4  ⊢  
  : , :
2theorem  ⊢  
 proveit.logic.equality.substitute_truth
3conjecture  ⊢  
 proveit.logic.booleans.true_is_bool
4assumption  ⊢