| step type | requirements | statement |
0 | generalization | 1 | ⊢ |
1 | modus ponens | 2, 3 | ⊢ |
2 | instantiation | 6, 4, 5 | ⊢ |
| : , : , : |
3 | assumption | | ⊢ |
4 | instantiation | 6, 7, 8 | ⊢ |
| : , : , : |
5 | instantiation | 12, 9, 10 | ⊢ |
| : , : , : |
6 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
7 | deduction | 11 | ⊢ |
8 | instantiation | 12, 28, 13 | ⊢ |
| : , : , : |
9 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
10 | instantiation | 14 | ⊢ |
| : , : , : , : , : |
11 | instantiation | 17, 15, 16 | ⊢ |
| : , : , : |
12 | axiom | | ⊢ |
| proveit.logic.sets.enumeration.enum_set_def |
13 | instantiation | 38 | ⊢ |
| : , : , : |
14 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
15 | instantiation | 17, 18, 19 | ⊢ |
| : , : , : |
16 | instantiation | 23, 28, 32, 35, 20, 37, 24, 46, 25, 26, 47 | ⊢ |
| : , : , : , : , : , : , : |
17 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
18 | instantiation | 27, 28, 34, 35, 29, 21, 37, 22 | ⊢ |
| : , : , : , : , : , : |
19 | instantiation | 23, 32, 34, 31, 24, 25, 26, 46, 47 | ⊢ |
| : , : , : , : , : , : , : |
20 | instantiation | 38 | ⊢ |
| : , : , : |
21 | instantiation | 42 | ⊢ |
| : , : |
22 | instantiation | 27, 35, 28, 32, 37, 29, 30 | ⊢ |
| : , : , : , : , : , : |
23 | theorem | | ⊢ |
| proveit.logic.booleans.disjunction.leftward_commutation |
24 | instantiation | 33, 35, 34, 37, 31, 40 | ⊢ |
| : , : , : , : , : |
25 | instantiation | 33, 32, 40 | ⊢ |
| : , : , : , : , : |
26 | instantiation | 33, 34, 35, 36, 37, 40 | ⊢ |
| : , : , : , : , : |
27 | theorem | | ⊢ |
| proveit.logic.booleans.disjunction.disassociate |
28 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
29 | instantiation | 38 | ⊢ |
| : , : , : |
30 | instantiation | 39, 40, 41, 44 | ⊢ |
| : , : |
31 | instantiation | 42 | ⊢ |
| : , : |
32 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
33 | theorem | | ⊢ |
| proveit.logic.booleans.disjunction.each_is_bool |
34 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
35 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
36 | instantiation | 42 | ⊢ |
| : , : |
37 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
38 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
39 | theorem | | ⊢ |
| proveit.logic.booleans.disjunction.or_if_left |
40 | instantiation | 43, 44 | ⊢ |
| : |
41 | instantiation | 45, 46, 47 | ⊢ |
| : , : |
42 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
43 | theorem | | ⊢ |
| proveit.logic.booleans.in_bool_if_true |
44 | assumption | | ⊢ |
45 | theorem | | ⊢ |
| proveit.logic.booleans.disjunction.binary_closure |
46 | instantiation | 48 | ⊢ |
| : , : |
47 | instantiation | 48 | ⊢ |
| : , : |
48 | axiom | | ⊢ |
| proveit.logic.equality.equality_in_bool |