\forall_{i, j, k \in \mathbb{N}}~\left[\begin{array}{l}\forall_{V \underset{{\scriptscriptstyle c}}{\in} \textrm{VecSpaces}\left(K\right)}~\\
\left[\begin{array}{l}\forall_{a_{1}, a_{2}, \ldots, a_{i}, b_{1}, b_{2}, \ldots, b_{j}, c_{1}, c_{2}, \ldots, c_{k}}~\\
\left(\begin{array}{c} \begin{array}{l} \left(\left(a_{1} {\otimes} a_{2} {\otimes} \ldots {\otimes} a_{i} {\otimes} \left(b_{1} + b_{2} + \ldots + b_{j}\right){\otimes} c_{1} {\otimes} c_{2} {\otimes} \ldots {\otimes} c_{k}\right) \in V\right) \Rightarrow \\ \left(\begin{array}{c} \begin{array}{l} \left(\left(a_{1} {\otimes} a_{2} {\otimes} \ldots {\otimes} a_{i} {\otimes} b_{1}{\otimes} c_{1} {\otimes} c_{2} {\otimes} \ldots {\otimes} c_{k}\right) + \left(a_{1} {\otimes} a_{2} {\otimes} \ldots {\otimes} a_{i} {\otimes} b_{2}{\otimes} c_{1} {\otimes} c_{2} {\otimes} \ldots {\otimes} c_{k}\right) + \ldots + \left(a_{1} {\otimes} a_{2} {\otimes} \ldots {\otimes} a_{i} {\otimes} b_{j}{\otimes} c_{1} {\otimes} c_{2} {\otimes} \ldots {\otimes} c_{k}\right)\right) = \\ \left(a_{1} {\otimes} a_{2} {\otimes} \ldots {\otimes} a_{i} {\otimes} \left(b_{1} + b_{2} + \ldots + b_{j}\right){\otimes} c_{1} {\otimes} c_{2} {\otimes} \ldots {\otimes} c_{k}\right) \end{array} \end{array}\right) \end{array} \end{array}\right)\end{array}\right]\end{array}\right]