logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, ExprTuple, IndexedVar, V, Variable, b, j
from proveit.core_expr_types import a_1_to_i, b_1_to_j, c_1_to_k
from proveit.linear_algebra import TensorProd, VecAdd
from proveit.logic import Equals, InSet
from proveit.numbers import one
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_b", latex_format = r"{_{-}b}")
sub_expr2 = TensorProd(a_1_to_i, VecAdd(b_1_to_j), c_1_to_k)
expr = ExprTuple(InSet(sub_expr2, V), Equals(VecAdd(ExprRange(sub_expr1, TensorProd(a_1_to_i, IndexedVar(b, sub_expr1), c_1_to_k), one, j)), sub_expr2).with_wrapping_at(2))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} \left(b_{1} +  b_{2} +  \ldots +  b_{j}\right){\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) \in V, \begin{array}{c} \begin{array}{l} \left(\left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} b_{1}{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) +  \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} b_{2}{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) +  \ldots +  \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} b_{j}{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right)\right) =  \\ \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} \left(b_{1} +  b_{2} +  \ldots +  b_{j}\right){\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) \end{array} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operands: 4
2Operationoperator: 5
operands: 6
3Literal
4ExprTuple9, 7
5Literal
6ExprTuple8, 9
7Variable
8Operationoperator: 15
operands: 10
9Operationoperator: 19
operands: 11
10ExprTuple12
11ExprTuple23, 13, 25
12ExprRangelambda_map: 14
start_index: 31
end_index: 22
13Operationoperator: 15
operands: 16
14Lambdaparameter: 35
body: 17
15Literal
16ExprTuple18
17Operationoperator: 19
operands: 20
18ExprRangelambda_map: 21
start_index: 31
end_index: 22
19Literal
20ExprTuple23, 24, 25
21Lambdaparameter: 40
body: 26
22Variable
23ExprRangelambda_map: 27
start_index: 31
end_index: 28
24IndexedVarvariable: 33
index: 35
25ExprRangelambda_map: 30
start_index: 31
end_index: 32
26IndexedVarvariable: 33
index: 40
27Lambdaparameter: 40
body: 34
28Variable
29ExprTuple35
30Lambdaparameter: 40
body: 36
31Literal
32Variable
33Variable
34IndexedVarvariable: 37
index: 40
35Variable
36IndexedVarvariable: 38
index: 40
37Variable
38Variable
39ExprTuple40
40Variable