logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, ExprTuple, IndexedVar, Variable, b, j
from proveit.core_expr_types import a_1_to_i, b_1_to_j, c_1_to_k
from proveit.linear_algebra import TensorProd, VecAdd
from proveit.numbers import one
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_b", latex_format = r"{_{-}b}")
expr = ExprTuple(VecAdd(ExprRange(sub_expr1, TensorProd(a_1_to_i, IndexedVar(b, sub_expr1), c_1_to_k), one, j)), TensorProd(a_1_to_i, VecAdd(b_1_to_j), c_1_to_k))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} b_{1}{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) +  \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} b_{2}{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) +  \ldots +  \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} b_{j}{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right), a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} \left(b_{1} +  b_{2} +  \ldots +  b_{j}\right){\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 8
operands: 3
2Operationoperator: 12
operands: 4
3ExprTuple5
4ExprTuple16, 6, 18
5ExprRangelambda_map: 7
start_index: 24
end_index: 15
6Operationoperator: 8
operands: 9
7Lambdaparameter: 28
body: 10
8Literal
9ExprTuple11
10Operationoperator: 12
operands: 13
11ExprRangelambda_map: 14
start_index: 24
end_index: 15
12Literal
13ExprTuple16, 17, 18
14Lambdaparameter: 33
body: 19
15Variable
16ExprRangelambda_map: 20
start_index: 24
end_index: 21
17IndexedVarvariable: 26
index: 28
18ExprRangelambda_map: 23
start_index: 24
end_index: 25
19IndexedVarvariable: 26
index: 33
20Lambdaparameter: 33
body: 27
21Variable
22ExprTuple28
23Lambdaparameter: 33
body: 29
24Literal
25Variable
26Variable
27IndexedVarvariable: 30
index: 33
28Variable
29IndexedVarvariable: 31
index: 33
30Variable
31Variable
32ExprTuple33
33Variable