logo

Expression of type Lambda

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, IndexedVar, Lambda, V, Variable, b, j
from proveit.core_expr_types import a_1_to_i, b_1_to_j, c_1_to_k
from proveit.linear_algebra import TensorProd, VecAdd
from proveit.logic import Equals, Implies, InSet
from proveit.numbers import one
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_b", latex_format = r"{_{-}b}")
sub_expr2 = TensorProd(a_1_to_i, VecAdd(b_1_to_j), c_1_to_k)
expr = Lambda([a_1_to_i, b_1_to_j, c_1_to_k], Implies(InSet(sub_expr2, V), Equals(VecAdd(ExprRange(sub_expr1, TensorProd(a_1_to_i, IndexedVar(b, sub_expr1), c_1_to_k), one, j)), sub_expr2).with_wrapping_at(2)).with_wrapping_at(2))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a_{1}, a_{2}, \ldots, a_{i}, b_{1}, b_{2}, \ldots, b_{j}, c_{1}, c_{2}, \ldots, c_{k}\right) \mapsto \left(\begin{array}{c} \begin{array}{l} \left(\left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} \left(b_{1} +  b_{2} +  \ldots +  b_{j}\right){\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) \in V\right) \Rightarrow  \\ \left(\begin{array}{c} \begin{array}{l} \left(\left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} b_{1}{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) +  \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} b_{2}{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) +  \ldots +  \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} b_{j}{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right)\right) =  \\ \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} \left(b_{1} +  b_{2} +  \ldots +  b_{j}\right){\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) \end{array} \end{array}\right) \end{array} \end{array}\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple27, 22, 29
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple5, 6
5Operationoperator: 7
operands: 8
6Operationoperator: 9
operands: 10
7Literal
8ExprTuple13, 11
9Literal
10ExprTuple12, 13
11Variable
12Operationoperator: 19
operands: 14
13Operationoperator: 23
operands: 15
14ExprTuple16
15ExprTuple27, 17, 29
16ExprRangelambda_map: 18
start_index: 35
end_index: 26
17Operationoperator: 19
operands: 20
18Lambdaparameter: 39
body: 21
19Literal
20ExprTuple22
21Operationoperator: 23
operands: 24
22ExprRangelambda_map: 25
start_index: 35
end_index: 26
23Literal
24ExprTuple27, 28, 29
25Lambdaparameter: 44
body: 30
26Variable
27ExprRangelambda_map: 31
start_index: 35
end_index: 32
28IndexedVarvariable: 37
index: 39
29ExprRangelambda_map: 34
start_index: 35
end_index: 36
30IndexedVarvariable: 37
index: 44
31Lambdaparameter: 44
body: 38
32Variable
33ExprTuple39
34Lambdaparameter: 44
body: 40
35Literal
36Variable
37Variable
38IndexedVarvariable: 41
index: 44
39Variable
40IndexedVarvariable: 42
index: 44
41Variable
42Variable
43ExprTuple44
44Variable