logo

Expression of type Forall

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Function, K, V, s
from proveit.core_expr_types import Q__b_1_to_j, a_1_to_i, b_1_to_j, c_1_to_k, f__b_1_to_j
from proveit.linear_algebra import ScalarMult, TensorProd, VecSpaces, VecSum
from proveit.logic import Equals, Forall, Implies, InSet
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [b_1_to_j]
sub_expr2 = Function(s, sub_expr1)
sub_expr3 = ScalarMult(sub_expr2, f__b_1_to_j)
expr = Forall(instance_param_or_params = [V], instance_expr = Forall(instance_param_or_params = [a_1_to_i, c_1_to_k], instance_expr = Implies(Forall(instance_param_or_params = sub_expr1, instance_expr = InSet(TensorProd(a_1_to_i, sub_expr3, c_1_to_k), V), condition = Q__b_1_to_j), Equals(TensorProd(a_1_to_i, VecSum(index_or_indices = sub_expr1, summand = sub_expr3, condition = Q__b_1_to_j), c_1_to_k), VecSum(index_or_indices = sub_expr1, summand = ScalarMult(sub_expr2, TensorProd(a_1_to_i, f__b_1_to_j, c_1_to_k)), condition = Q__b_1_to_j)).with_wrapping_at(1)).with_wrapping_at(2)).with_wrapping(), domain = VecSpaces(K)).with_wrapping()
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{l}\forall_{V \underset{{\scriptscriptstyle c}}{\in} \textrm{VecSpaces}\left(K\right)}~\\
\left[\begin{array}{l}\forall_{a_{1}, a_{2}, \ldots, a_{i}, c_{1}, c_{2}, \ldots, c_{k}}~\\
\left(\begin{array}{c} \begin{array}{l} \left[\forall_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(\left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} \left(s\left(b_{1}, b_{2}, \ldots, b_{j}\right) \cdot f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right){\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) \in V\right)\right] \Rightarrow  \\ \left(\begin{array}{c} \begin{array}{l} \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} \left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(s\left(b_{1}, b_{2}, \ldots, b_{j}\right) \cdot f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right)\right]{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) \\  = \left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(s\left(b_{1}, b_{2}, \ldots, b_{j}\right) \cdot \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} f\left(b_{1}, b_{2}, \ldots, b_{j}\right){\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right)\right)\right] \end{array} \end{array}\right) \end{array} \end{array}\right)\end{array}\right]\end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
with_wrappingIf 'True', wrap the Expression after the parametersNoneTrue('with_wrapping',)
condition_wrappingWrap 'before' or 'after' the condition (or None).NoneNone/False('with_wrap_after_condition', 'with_wrap_before_condition')
wrap_paramsIf 'True', wraps every two parameters AND wraps the Expression after the parametersNoneNone/False('with_params',)
justificationjustify to the 'left', 'center', or 'right' in the array cellscentercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 21
operand: 2
1ExprTuple2
2Lambdaparameter: 40
body: 4
3ExprTuple40
4Conditionalvalue: 5
condition: 6
5Operationoperator: 21
operand: 10
6Operationoperator: 8
operands: 9
7ExprTuple10
8Literal
9ExprTuple40, 11
10Lambdaparameters: 12
body: 13
11Operationoperator: 14
operand: 18
12ExprTuple55, 57
13Operationoperator: 16
operands: 17
14Literal
15ExprTuple18
16Literal
17ExprTuple19, 20
18Variable
19Operationoperator: 21
operand: 25
20Operationoperator: 23
operands: 24
21Literal
22ExprTuple25
23Literal
24ExprTuple26, 27
25Lambdaparameters: 62
body: 28
26Operationoperator: 52
operands: 29
27Operationoperator: 36
operand: 33
28Conditionalvalue: 31
condition: 47
29ExprTuple55, 32, 57
30ExprTuple33
31Operationoperator: 34
operands: 35
32Operationoperator: 36
operand: 41
33Lambdaparameters: 62
body: 38
34Literal
35ExprTuple39, 40
36Literal
37ExprTuple41
38Conditionalvalue: 42
condition: 47
39Operationoperator: 52
operands: 43
40Variable
41Lambdaparameters: 62
body: 44
42Operationoperator: 49
operands: 45
43ExprTuple55, 46, 57
44Conditionalvalue: 46
condition: 47
45ExprTuple54, 48
46Operationoperator: 49
operands: 50
47Operationoperator: 51
operands: 62
48Operationoperator: 52
operands: 53
49Literal
50ExprTuple54, 56
51Variable
52Literal
53ExprTuple55, 56, 57
54Operationoperator: 58
operands: 62
55ExprRangelambda_map: 59
start_index: 70
end_index: 60
56Operationoperator: 61
operands: 62
57ExprRangelambda_map: 63
start_index: 70
end_index: 64
58Variable
59Lambdaparameter: 76
body: 65
60Variable
61Variable
62ExprTuple66
63Lambdaparameter: 76
body: 67
64Variable
65IndexedVarvariable: 68
index: 76
66ExprRangelambda_map: 69
start_index: 70
end_index: 71
67IndexedVarvariable: 72
index: 76
68Variable
69Lambdaparameter: 76
body: 73
70Literal
71Variable
72Variable
73IndexedVarvariable: 74
index: 76
74Variable
75ExprTuple76
76Variable