logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, Function, s
from proveit.core_expr_types import Q__b_1_to_j, a_1_to_i, b_1_to_j, c_1_to_k, f__b_1_to_j
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [b_1_to_j]
sub_expr2 = Function(s, sub_expr1)
expr = ExprTuple(TensorProd(a_1_to_i, VecSum(index_or_indices = sub_expr1, summand = ScalarMult(sub_expr2, f__b_1_to_j), condition = Q__b_1_to_j), c_1_to_k), VecSum(index_or_indices = sub_expr1, summand = ScalarMult(sub_expr2, TensorProd(a_1_to_i, f__b_1_to_j, c_1_to_k)), condition = Q__b_1_to_j))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} \left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(s\left(b_{1}, b_{2}, \ldots, b_{j}\right) \cdot f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right)\right]{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}, \sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(s\left(b_{1}, b_{2}, \ldots, b_{j}\right) \cdot \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} f\left(b_{1}, b_{2}, \ldots, b_{j}\right){\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 20
operands: 3
2Operationoperator: 7
operand: 6
3ExprTuple23, 5, 25
4ExprTuple6
5Operationoperator: 7
operand: 10
6Lambdaparameters: 30
body: 9
7Literal
8ExprTuple10
9Conditionalvalue: 11
condition: 15
10Lambdaparameters: 30
body: 12
11Operationoperator: 17
operands: 13
12Conditionalvalue: 14
condition: 15
13ExprTuple22, 16
14Operationoperator: 17
operands: 18
15Operationoperator: 19
operands: 30
16Operationoperator: 20
operands: 21
17Literal
18ExprTuple22, 24
19Variable
20Literal
21ExprTuple23, 24, 25
22Operationoperator: 26
operands: 30
23ExprRangelambda_map: 27
start_index: 38
end_index: 28
24Operationoperator: 29
operands: 30
25ExprRangelambda_map: 31
start_index: 38
end_index: 32
26Variable
27Lambdaparameter: 44
body: 33
28Variable
29Variable
30ExprTuple34
31Lambdaparameter: 44
body: 35
32Variable
33IndexedVarvariable: 36
index: 44
34ExprRangelambda_map: 37
start_index: 38
end_index: 39
35IndexedVarvariable: 40
index: 44
36Variable
37Lambdaparameter: 44
body: 41
38Literal
39Variable
40Variable
41IndexedVarvariable: 42
index: 44
42Variable
43ExprTuple44
44Variable