logo

Expression of type VecSum

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Function, s
from proveit.core_expr_types import Q__b_1_to_j, a_1_to_i, b_1_to_j, c_1_to_k, f__b_1_to_j
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [b_1_to_j]
expr = VecSum(index_or_indices = sub_expr1, summand = ScalarMult(Function(s, sub_expr1), TensorProd(a_1_to_i, f__b_1_to_j, c_1_to_k)), condition = Q__b_1_to_j)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(s\left(b_{1}, b_{2}, \ldots, b_{j}\right) \cdot \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} f\left(b_{1}, b_{2}, \ldots, b_{j}\right){\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
with_wrappingIf 'True', wrap the Expression after the parametersNoneNone/False('with_wrapping',)
condition_wrappingWrap 'before' or 'after' the condition (or None).NoneNone/False('with_wrap_after_condition', 'with_wrap_before_condition')
wrap_paramsIf 'True', wraps every two parameters AND wraps the Expression after the parametersNoneNone/False('with_params',)
justificationjustify to the 'left', 'center', or 'right' in the array cellscentercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operand: 3
1Literal
2ExprTuple3
3Lambdaparameters: 21
body: 4
4Conditionalvalue: 5
condition: 6
5Operationoperator: 7
operands: 8
6Operationoperator: 9
operands: 21
7Literal
8ExprTuple10, 11
9Variable
10Operationoperator: 12
operands: 21
11Operationoperator: 13
operands: 14
12Variable
13Literal
14ExprTuple15, 16, 17
15ExprRangelambda_map: 18
start_index: 29
end_index: 19
16Operationoperator: 20
operands: 21
17ExprRangelambda_map: 22
start_index: 29
end_index: 23
18Lambdaparameter: 35
body: 24
19Variable
20Variable
21ExprTuple25
22Lambdaparameter: 35
body: 26
23Variable
24IndexedVarvariable: 27
index: 35
25ExprRangelambda_map: 28
start_index: 29
end_index: 30
26IndexedVarvariable: 31
index: 35
27Variable
28Lambdaparameter: 35
body: 32
29Literal
30Variable
31Variable
32IndexedVarvariable: 33
index: 35
33Variable
34ExprTuple35
35Variable