logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Function, Lambda, s
from proveit.core_expr_types import Q__b_1_to_j, b_1_to_j, f__b_1_to_j
from proveit.linear_algebra import ScalarMult
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [b_1_to_j]
expr = ExprTuple(Lambda(sub_expr1, Conditional(ScalarMult(Function(s, sub_expr1), f__b_1_to_j), Q__b_1_to_j)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(b_{1}, b_{2}, \ldots, b_{j}\right) \mapsto \left\{s\left(b_{1}, b_{2}, \ldots, b_{j}\right) \cdot f\left(b_{1}, b_{2}, \ldots, b_{j}\right) \textrm{ if } Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 12
body: 2
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 12
5Literal
6ExprTuple8, 9
7Variable
8Operationoperator: 10
operands: 12
9Operationoperator: 11
operands: 12
10Variable
11Variable
12ExprTuple13
13ExprRangelambda_map: 14
start_index: 15
end_index: 16
14Lambdaparameter: 20
body: 17
15Literal
16Variable
17IndexedVarvariable: 18
index: 20
18Variable
19ExprTuple20
20Variable