| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10* | , , , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 1 | reference | 21 | ⊢  |
| 2 | reference | 29 | ⊢  |
| 3 | reference | 35 | ⊢  |
| 4 | reference | 37 | ⊢  |
| 5 | reference | 39 | ⊢  |
| 6 | reference | 40 | ⊢  |
| 7 | reference | 22 | ⊢  |
| 8 | reference | 42 | ⊢  |
| 9 | instantiation | 11, 22, 30, 23 | , , , , ⊢  |
| | : , : , : , :  |
| 10 | instantiation | 12, 13, 14 | , , , , , , ⊢  |
| | : , : , :  |
| 11 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
| 12 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 13 | instantiation | 15, 16 | , , , , , ⊢  |
| | : , : , :  |
| 14 | instantiation | 17, 18, 19, 29, 30, 20* | , , , , , , ⊢  |
| | : , : , : , : , :  |
| 15 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 16 | instantiation | 21, 30, 35, 37, 39, 40, 22, 42, 23, 24* | , , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 17 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
| 18 | instantiation | 31, 25, 26, 40 | ⊢  |
| | : , : , :  |
| 19 | instantiation | 32, 25, 26, 40, 27, 42, 43, 44, 45, 46 | , , , , ⊢  |
| | : , : , : , :  |
| 20 | instantiation | 28, 29, 30 | , ⊢  |
| | : , :  |
| 21 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
| 22 | instantiation | 31, 33, 38, 40 | ⊢  |
| | : , : , :  |
| 23 | instantiation | 32, 33, 38, 40, 41, 43, 44, 45, 46 | , , , ⊢  |
| | : , : , : , :  |
| 24 | instantiation | 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46 | , , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 25 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat5 |
| 26 | instantiation | 47 | ⊢  |
| | : , : , : , : , :  |
| 27 | instantiation | 47 | ⊢  |
| | : , : , : , : , :  |
| 28 | axiom | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
| 29 | instantiation | 48, 63, 49 | ⊢  |
| | : , : , :  |
| 30 | assumption | | ⊢  |
| 31 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 32 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 33 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat4 |
| 34 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_disassociation |
| 35 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 36 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 37 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 38 | instantiation | 51 | ⊢  |
| | : , : , : , :  |
| 39 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 40 | instantiation | 50, 60 | ⊢  |
| | :  |
| 41 | instantiation | 51 | ⊢  |
| | : , : , : , :  |
| 42 | instantiation | 56, 57, 52 | ⊢  |
| | : , : , :  |
| 43 | instantiation | 56, 57, 53 | ⊢  |
| | : , : , :  |
| 44 | instantiation | 56, 57, 54 | ⊢  |
| | : , : , :  |
| 45 | instantiation | 56, 57, 55 | ⊢  |
| | : , : , :  |
| 46 | instantiation | 56, 57, 58 | ⊢  |
| | : , : , :  |
| 47 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
| 48 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 49 | assumption | | ⊢  |
| 50 | theorem | | ⊢  |
| | proveit.linear_algebra.complex_vec_set_is_vec_space |
| 51 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
| 52 | assumption | | ⊢  |
| 53 | assumption | | ⊢  |
| 54 | assumption | | ⊢  |
| 55 | assumption | | ⊢  |
| 56 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 57 | instantiation | 59, 60, 61 | ⊢  |
| | : , : , :  |
| 58 | assumption | | ⊢  |
| 59 | theorem | | ⊢  |
| | proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
| 60 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 61 | instantiation | 62, 63 | ⊢  |
| | : , :  |
| 62 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 63 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| *equality replacement requirements |