| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10* | , , , , , , ⊢  |
| : , : , : , : , : , : , : , : , : , :  |
1 | reference | 21 | ⊢  |
2 | reference | 29 | ⊢  |
3 | reference | 35 | ⊢  |
4 | reference | 37 | ⊢  |
5 | reference | 39 | ⊢  |
6 | reference | 40 | ⊢  |
7 | reference | 22 | ⊢  |
8 | reference | 42 | ⊢  |
9 | instantiation | 11, 22, 30, 23 | , , , , ⊢  |
| : , : , : , :  |
10 | instantiation | 12, 13, 14 | , , , , , , ⊢  |
| : , : , :  |
11 | theorem | | ⊢  |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
12 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
13 | instantiation | 15, 16 | , , , , , ⊢  |
| : , : , :  |
14 | instantiation | 17, 18, 19, 29, 30, 20* | , , , , , , ⊢  |
| : , : , : , : , :  |
15 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
16 | instantiation | 21, 30, 35, 37, 39, 40, 22, 42, 23, 24* | , , , , , ⊢  |
| : , : , : , : , : , : , : , : , : , :  |
17 | theorem | | ⊢  |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
18 | instantiation | 31, 25, 26, 40 | ⊢  |
| : , : , :  |
19 | instantiation | 32, 25, 26, 40, 27, 42, 43, 44, 45, 46 | , , , , ⊢  |
| : , : , : , :  |
20 | instantiation | 28, 29, 30 | , ⊢  |
| : , :  |
21 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
22 | instantiation | 31, 33, 38, 40 | ⊢  |
| : , : , :  |
23 | instantiation | 32, 33, 38, 40, 41, 43, 44, 45, 46 | , , , ⊢  |
| : , : , : , :  |
24 | instantiation | 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46 | , , , , ⊢  |
| : , : , : , : , : , : , : , : , : , :  |
25 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat5 |
26 | instantiation | 47 | ⊢  |
| : , : , : , : , :  |
27 | instantiation | 47 | ⊢  |
| : , : , : , : , :  |
28 | axiom | | ⊢  |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
29 | instantiation | 48, 63, 49 | ⊢  |
| : , : , :  |
30 | assumption | | ⊢  |
31 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
32 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
33 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat4 |
34 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_disassociation |
35 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
36 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat4 |
37 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
38 | instantiation | 51 | ⊢  |
| : , : , : , :  |
39 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
40 | instantiation | 50, 60 | ⊢  |
| :  |
41 | instantiation | 51 | ⊢  |
| : , : , : , :  |
42 | instantiation | 56, 57, 52 | ⊢  |
| : , : , :  |
43 | instantiation | 56, 57, 53 | ⊢  |
| : , : , :  |
44 | instantiation | 56, 57, 54 | ⊢  |
| : , : , :  |
45 | instantiation | 56, 57, 55 | ⊢  |
| : , : , :  |
46 | instantiation | 56, 57, 58 | ⊢  |
| : , : , :  |
47 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
48 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
49 | assumption | | ⊢  |
50 | theorem | | ⊢  |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
51 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
52 | assumption | | ⊢  |
53 | assumption | | ⊢  |
54 | assumption | | ⊢  |
55 | assumption | | ⊢  |
56 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.unfold_subset_eq |
57 | instantiation | 59, 60, 61 | ⊢  |
| : , : , :  |
58 | assumption | | ⊢  |
59 | theorem | | ⊢  |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
60 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
61 | instantiation | 62, 63 | ⊢  |
| : , :  |
62 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.relax_proper_subset |
63 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
*equality replacement requirements |