logo

Expression of type InClass

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit.linear_algebra import TensorProd, VecSpaces
from proveit.logic import CartExp, InClass
from proveit.numbers import Complex, three
In [2]:
# build up the expression from sub-expressions
sub_expr1 = CartExp(Complex, three)
expr = InClass(TensorProd(sub_expr1, sub_expr1, sub_expr1, sub_expr1, sub_expr1), VecSpaces(Complex))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\mathbb{C}^{3} {\otimes} \mathbb{C}^{3} {\otimes} \mathbb{C}^{3} {\otimes} \mathbb{C}^{3} {\otimes} \mathbb{C}^{3}\right) \underset{{\scriptscriptstyle c}}{\in} \textrm{VecSpaces}\left(\mathbb{C}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operand: 12
5Literal
6ExprTuple9, 9, 9, 9, 9
7Literal
8ExprTuple12
9Operationoperator: 10
operands: 11
10Literal
11ExprTuple12, 13
12Literal
13Literal