| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , , , , ⊢ |
| : , : , : |
1 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
2 | instantiation | 4, 5 | , , , , , ⊢ |
| : , : , : |
3 | instantiation | 6, 7, 8, 18, 19, 9* | , , , , , , ⊢ |
| : , : , : , : , : |
4 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
5 | instantiation | 10, 19, 24, 26, 28, 29, 11, 31, 12, 13* | , , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
6 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
7 | instantiation | 20, 14, 15, 29 | ⊢ |
| : , : , : |
8 | instantiation | 21, 14, 15, 29, 16, 31, 32, 33, 34, 35 | , , , , ⊢ |
| : , : , : , : |
9 | instantiation | 17, 18, 19 | , ⊢ |
| : , : |
10 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
11 | instantiation | 20, 22, 27, 29 | ⊢ |
| : , : , : |
12 | instantiation | 21, 22, 27, 29, 30, 32, 33, 34, 35 | , , , ⊢ |
| : , : , : , : |
13 | instantiation | 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 | , , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
14 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat5 |
15 | instantiation | 36 | ⊢ |
| : , : , : , : , : |
16 | instantiation | 36 | ⊢ |
| : , : , : , : , : |
17 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
18 | instantiation | 37, 52, 38 | ⊢ |
| : , : , : |
19 | assumption | | ⊢ |
20 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
21 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
22 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
23 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_disassociation |
24 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
25 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
26 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
27 | instantiation | 40 | ⊢ |
| : , : , : , : |
28 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
29 | instantiation | 39, 49 | ⊢ |
| : |
30 | instantiation | 40 | ⊢ |
| : , : , : , : |
31 | instantiation | 45, 46, 41 | ⊢ |
| : , : , : |
32 | instantiation | 45, 46, 42 | ⊢ |
| : , : , : |
33 | instantiation | 45, 46, 43 | ⊢ |
| : , : , : |
34 | instantiation | 45, 46, 44 | ⊢ |
| : , : , : |
35 | instantiation | 45, 46, 47 | ⊢ |
| : , : , : |
36 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_5_typical_eq |
37 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
38 | assumption | | ⊢ |
39 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
40 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
41 | assumption | | ⊢ |
42 | assumption | | ⊢ |
43 | assumption | | ⊢ |
44 | assumption | | ⊢ |
45 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
46 | instantiation | 48, 49, 50 | ⊢ |
| : , : , : |
47 | assumption | | ⊢ |
48 | theorem | | ⊢ |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
49 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
50 | instantiation | 51, 52 | ⊢ |
| : , : |
51 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
52 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
*equality replacement requirements |