| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5* | , , , , ⊢ |
| : , : , : , : |
1 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
2 | instantiation | 10, 6, 7*, 8* | , , , , ⊢ |
| : , : , : |
3 | instantiation | 17, 9 | , , , , ⊢ |
| : , : |
4 | instantiation | 10, 11 | , , ⊢ |
| : , : , : |
5 | reference | 31 | , ⊢ |
6 | modus ponens | 12, 13 | , , , , ⊢ |
7 | instantiation | 14, 84 | ⊢ |
| : , : |
8 | instantiation | 14, 84 | ⊢ |
| : , : |
9 | modus ponens | 15, 16 | , , , , ⊢ |
10 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
11 | instantiation | 17, 18 | , , ⊢ |
| : , : |
12 | instantiation | 19, 35 | ⊢ |
| : , : , : , : , : , : , : |
13 | generalization | 20 | , , , , ⊢ |
14 | theorem | | ⊢ |
| proveit.core_expr_types.conditionals.satisfied_condition_reduction |
15 | instantiation | 21, 35, 36, 22 | , ⊢ |
| : , : , : , : , : , : , : |
16 | modus ponens | 23, 25 | , , ⊢ |
17 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
18 | modus ponens | 24, 25 | , , ⊢ |
19 | theorem | | ⊢ |
| proveit.core_expr_types.lambda_maps.general_lambda_substitution |
20 | instantiation | 26, 27, 28, 45, 46 | , , , , , ⊢ |
| : , : , : , : , : |
21 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum |
22 | instantiation | 29, 30, 31 | , ⊢ |
| : , : , : |
23 | instantiation | 32, 35, 36 | ⊢ |
| : , : , : , : , : , : |
24 | instantiation | 33, 34, 35, 36 | ⊢ |
| : , : , : , : , : , : , : , : , : , : |
25 | generalization | 37 | , , ⊢ |
26 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
27 | instantiation | 47, 65, 38, 39 | ⊢ |
| : , : , : |
28 | instantiation | 48, 65, 38, 39, 51, 40, 41, 42 | , , , ⊢ |
| : , : , : , : |
29 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
30 | instantiation | 43, 58, 59 | , ⊢ |
| : , : |
31 | instantiation | 44, 45, 46 | , ⊢ |
| : , : |
32 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
33 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation |
34 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
36 | instantiation | 47, 65, 49, 50 | ⊢ |
| : , : , : |
37 | instantiation | 48, 65, 49, 50, 51, 53, 54, 57 | , , , ⊢ |
| : , : , : , : |
38 | instantiation | 61 | ⊢ |
| : , : , : |
39 | instantiation | 52, 65 | ⊢ |
| : |
40 | instantiation | 55, 56, 53 | ⊢ |
| : , : , : |
41 | instantiation | 55, 56, 54 | , ⊢ |
| : , : , : |
42 | instantiation | 55, 56, 57 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
44 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
45 | instantiation | 86, 71, 58 | ⊢ |
| : , : , : |
46 | instantiation | 86, 71, 59 | ⊢ |
| : , : , : |
47 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
48 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
49 | instantiation | 61 | ⊢ |
| : , : , : |
50 | instantiation | 60, 65 | ⊢ |
| : |
51 | instantiation | 61 | ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
53 | assumption | | ⊢ |
54 | instantiation | 62, 63 | , ⊢ |
| : |
55 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
56 | instantiation | 64, 65, 66 | ⊢ |
| : , : , : |
57 | assumption | | ⊢ |
58 | assumption | | ⊢ |
59 | assumption | | ⊢ |
60 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
61 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
62 | assumption | | ⊢ |
63 | instantiation | 67, 68, 69 | ⊢ |
| : |
64 | theorem | | ⊢ |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
65 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
66 | instantiation | 70, 71 | ⊢ |
| : , : |
67 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nonneg_int_is_natural |
68 | instantiation | 86, 72, 84 | ⊢ |
| : , : , : |
69 | instantiation | 73, 74 | ⊢ |
| : , : |
70 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
71 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
72 | instantiation | 75, 82, 83 | ⊢ |
| : , : |
73 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
74 | instantiation | 76, 77, 78 | ⊢ |
| : , : , : |
75 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
76 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
77 | instantiation | 79, 80 | ⊢ |
| : |
78 | instantiation | 81, 82, 83, 84 | ⊢ |
| : , : , : |
79 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
80 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
81 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
82 | instantiation | 86, 87, 85 | ⊢ |
| : , : , : |
83 | instantiation | 86, 87, 88 | ⊢ |
| : , : , : |
84 | assumption | | ⊢ |
85 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
86 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
88 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
*equality replacement requirements |