| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5* | , , , , ⊢  |
| | : , : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 2 | instantiation | 10, 6, 7*, 8* | , , , , ⊢  |
| | : , : , :  |
| 3 | instantiation | 17, 9 | , , , , ⊢  |
| | : , :  |
| 4 | instantiation | 10, 11 | , , ⊢  |
| | : , : , :  |
| 5 | reference | 31 | , ⊢  |
| 6 | modus ponens | 12, 13 | , , , , ⊢  |
| 7 | instantiation | 14, 84 | ⊢  |
| | : , :  |
| 8 | instantiation | 14, 84 | ⊢  |
| | : , :  |
| 9 | modus ponens | 15, 16 | , , , , ⊢  |
| 10 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 11 | instantiation | 17, 18 | , , ⊢  |
| | : , :  |
| 12 | instantiation | 19, 35 | ⊢  |
| | : , : , : , : , : , : , :  |
| 13 | generalization | 20 | , , , , ⊢  |
| 14 | theorem | | ⊢  |
| | proveit.core_expr_types.conditionals.satisfied_condition_reduction |
| 15 | instantiation | 21, 35, 36, 22 | , ⊢  |
| | : , : , : , : , : , : , :  |
| 16 | modus ponens | 23, 25 | , , ⊢  |
| 17 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 18 | modus ponens | 24, 25 | , , ⊢  |
| 19 | theorem | | ⊢  |
| | proveit.core_expr_types.lambda_maps.general_lambda_substitution |
| 20 | instantiation | 26, 27, 28, 45, 46 | , , , , , ⊢  |
| | : , : , : , : , :  |
| 21 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum |
| 22 | instantiation | 29, 30, 31 | , ⊢  |
| | : , : , :  |
| 23 | instantiation | 32, 35, 36 | ⊢  |
| | : , : , : , : , : , :  |
| 24 | instantiation | 33, 34, 35, 36 | ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 25 | generalization | 37 | , , ⊢  |
| 26 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
| 27 | instantiation | 47, 65, 38, 39 | ⊢  |
| | : , : , :  |
| 28 | instantiation | 48, 65, 38, 39, 51, 40, 41, 42 | , , , ⊢  |
| | : , : , : , :  |
| 29 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 30 | instantiation | 43, 58, 59 | , ⊢  |
| | : , :  |
| 31 | instantiation | 44, 45, 46 | , ⊢  |
| | : , :  |
| 32 | theorem | | ⊢  |
| | proveit.linear_algebra.addition.summation_closure |
| 33 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation |
| 34 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 35 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 36 | instantiation | 47, 65, 49, 50 | ⊢  |
| | : , : , :  |
| 37 | instantiation | 48, 65, 49, 50, 51, 53, 54, 57 | , , , ⊢  |
| | : , : , : , :  |
| 38 | instantiation | 61 | ⊢  |
| | : , : , :  |
| 39 | instantiation | 52, 65 | ⊢  |
| | :  |
| 40 | instantiation | 55, 56, 53 | ⊢  |
| | : , : , :  |
| 41 | instantiation | 55, 56, 54 | , ⊢  |
| | : , : , :  |
| 42 | instantiation | 55, 56, 57 | ⊢  |
| | : , : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 44 | axiom | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
| 45 | instantiation | 86, 71, 58 | ⊢  |
| | : , : , :  |
| 46 | instantiation | 86, 71, 59 | ⊢  |
| | : , : , :  |
| 47 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 48 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 49 | instantiation | 61 | ⊢  |
| | : , : , :  |
| 50 | instantiation | 60, 65 | ⊢  |
| | :  |
| 51 | instantiation | 61 | ⊢  |
| | : , : , :  |
| 52 | theorem | | ⊢  |
| | proveit.linear_algebra.complex_vec_set_is_vec_space |
| 53 | assumption | | ⊢  |
| 54 | instantiation | 62, 63 | , ⊢  |
| | :  |
| 55 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 56 | instantiation | 64, 65, 66 | ⊢  |
| | : , : , :  |
| 57 | assumption | | ⊢  |
| 58 | assumption | | ⊢  |
| 59 | assumption | | ⊢  |
| 60 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 61 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 62 | assumption | | ⊢  |
| 63 | instantiation | 67, 68, 69 | ⊢  |
| | :  |
| 64 | theorem | | ⊢  |
| | proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
| 65 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 66 | instantiation | 70, 71 | ⊢  |
| | : , :  |
| 67 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nonneg_int_is_natural |
| 68 | instantiation | 86, 72, 84 | ⊢  |
| | : , : , :  |
| 69 | instantiation | 73, 74 | ⊢  |
| | : , :  |
| 70 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 71 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 72 | instantiation | 75, 82, 83 | ⊢  |
| | : , :  |
| 73 | theorem | | ⊢  |
| | proveit.numbers.ordering.relax_less |
| 74 | instantiation | 76, 77, 78 | ⊢  |
| | : , : , :  |
| 75 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.int_interval_within_int |
| 76 | theorem | | ⊢  |
| | proveit.numbers.ordering.transitivity_less_less_eq |
| 77 | instantiation | 79, 80 | ⊢  |
| | :  |
| 78 | instantiation | 81, 82, 83, 84 | ⊢  |
| | : , : , :  |
| 79 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
| 80 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 81 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.interval_lower_bound |
| 82 | instantiation | 86, 87, 85 | ⊢  |
| | : , : , :  |
| 83 | instantiation | 86, 87, 88 | ⊢  |
| | : , : , :  |
| 84 | assumption | | ⊢  |
| 85 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 86 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 87 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 88 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| *equality replacement requirements |