logo

Expression of type Implies

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import beta, fi, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import CartExp, Equals, Implies, InSet
from proveit.numbers import Interval, Real, four, three, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = Interval(two, four)
sub_expr3 = CartExp(Real, three)
sub_expr4 = ScalarMult(gamma, beta)
sub_expr5 = TensorProd(x, fi, y)
sub_expr6 = VecSum(index_or_indices = sub_expr1, summand = sub_expr5, domain = sub_expr2)
expr = Implies(InSet(sub_expr6, TensorProd(sub_expr3, sub_expr3, sub_expr3)), Equals(ScalarMult(sub_expr4, sub_expr6), VecSum(index_or_indices = sub_expr1, summand = ScalarMult(sub_expr4, sub_expr5), domain = sub_expr2)).with_wrapping_at(1)).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(\left(\sum_{i=2}^{4} \left(x {\otimes} f\left(i\right) {\otimes} y\right)\right) \in \left(\mathbb{R}^{3} {\otimes} \mathbb{R}^{3} {\otimes} \mathbb{R}^{3}\right)\right) \Rightarrow  \\ \left(\begin{array}{c} \begin{array}{l} \left(\left(\gamma \cdot \beta\right) \cdot \left(\sum_{i=2}^{4} \left(x {\otimes} f\left(i\right) {\otimes} y\right)\right)\right) \\  = \left(\sum_{i=2}^{4} \left(\left(\gamma \cdot \beta\right) \cdot \left(x {\otimes} f\left(i\right) {\otimes} y\right)\right)\right) \end{array} \end{array}\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 31
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple15, 8
6Literal
7ExprTuple9, 10
8Operationoperator: 35
operands: 11
9Operationoperator: 33
operands: 12
10Operationoperator: 19
operand: 16
11ExprTuple14, 14, 14
12ExprTuple29, 15
13ExprTuple16
14Operationoperator: 17
operands: 18
15Operationoperator: 19
operand: 24
16Lambdaparameter: 49
body: 21
17Literal
18ExprTuple22, 23
19Literal
20ExprTuple24
21Conditionalvalue: 25
condition: 28
22Literal
23Literal
24Lambdaparameter: 49
body: 26
25Operationoperator: 33
operands: 27
26Conditionalvalue: 30
condition: 28
27ExprTuple29, 30
28Operationoperator: 31
operands: 32
29Operationoperator: 33
operands: 34
30Operationoperator: 35
operands: 36
31Literal
32ExprTuple49, 37
33Literal
34ExprTuple38, 39
35Literal
36ExprTuple40, 41, 42
37Operationoperator: 43
operands: 44
38Variable
39Variable
40Variable
41Operationoperator: 45
operand: 49
42Variable
43Literal
44ExprTuple47, 48
45Variable
46ExprTuple49
47Literal
48Literal
49Variable