get_morris_samples¶
-
pyapprox.sensitivity_analysis.
get_morris_samples
(nvars, nlevels, ntrajectories, eps=0, icdfs=None)[source]¶ Compute a set of Morris trajectories used to compute elementary effects
- Parameters
- nvarsinteger
The number of variables
- nlevelsinteger
The number of levels used for to define the morris grid.
- ntrajectoriesinteger
The number of Morris trajectories requested
- epsfloat
Set grid used defining the Morris trajectory to [eps,1-eps]. This is needed when mapping the morris trajectories using inverse CDFs of unbounded variables
- icdfslist (nvars)
List of inverse CDFs functions for each variable
- Returns
- trajectoriesnp.ndarray (nvars,ntrajectories*(nvars+1))
The Morris trajectories
Notes
The choice of nlevels must be linked to the choice of ntrajectories. For example, if a large number of possible levels is used ntrajectories must also be high, otherwise if ntrajectories is small effort will be wasted because many levels will not be explored. nlevels=4 and ntrajectories=10 is often considered reasonable.