analyze_sensitivity_sparse_grid¶
-
pyapprox.sensitivity_analysis.
analyze_sensitivity_sparse_grid
(sparse_grid, max_order=2)[source]¶ Compute sensitivity indices from a sparse grid by converting it to a polynomial chaos expansion
- Parameters
- sparse_grid :class:`pyapprox.adaptive_sparse_grid:CombinationSparseGrid`
The sparse grid
- max_orderinteger
The maximum interaction order of Sonol indices to compute. A value of 2 will compute all pairwise interactions, a value of 3 will compute indices for all interactions involving 3 variables. The number of indices returned will be nchoosek(nvars+max_order,nvars). Warning when nvars is high the number of indices will increase rapidly with max_order.
- Returns
- result
pyapprox.sensitivity_analysis.SensivitityResult
Result object with the following attributes
- main_effectsnp.ndarray (nvars)
The variance based main effect sensitivity indices
- total_effectsnp.ndarray (nvars)
The variance based total effect sensitivity indices
- sobol_indicesnp.ndarray (nchoosek(nvars+max_order,nvars),nqoi)
The variance based Sobol sensitivity indices
- sobol_interaction_indicesnp.ndarray(nvars,nchoosek(nvars+max_order,nvars))
Indices specifying the variables in each interaction in
sobol_indices
- pce
multivariate_polynomials.PolynomialChaosExpansion
The pce respresentation of the sparse grid
approx
- result