solve_quantile_regression
- pyapprox.optimization.solve_quantile_regression(tau, samples, values, eval_basis_matrix, normalize_vals=False, opts={})[source]
Solve quantile regression problems.
- Parameters:
- taufloat
The quantile in [0, 1)
- samplesnp.ndarary (nvars, nsamples)
The training samples
- valuesnp.ndarary (nsamples, 1)
The function values at the training samples
- eval_basis_matrixcallable
A function returning the basis evaluated at the set of samples with signature
eval_basis_matrix(samples) -> np.ndarray (nsamples, nbasis)
- normalize_valsboolean
True - normalize the training values False - use the raw training values