solve_least_squares_regression
- pyapprox.optimization.solve_least_squares_regression(samples, values, eval_basis_matrix, lamda=0.0, normalize_vals=True)[source]
Solve the safety margins least squares regression problem.
- Parameters:
- samplesnp.ndarary (nvars, nsamples)
The training samples
- valuesnp.ndarary (nsamples, 1)
The function values at the training samples
- eval_basis_matrixcallable
A function returning the basis evaluated at the set of samples with signature
eval_basis_matrix(samples) -> np.ndarray (nsamples, nbasis)
- lambdafloat
The number [0, infty) of standard deviations used to determine risk averse shift
- normalize_valsboolean
True - normalize the training values False - use the raw training values