evaluate_1darray_function_on_2d_array
- pyapprox.interface.evaluate_1darray_function_on_2d_array(function, samples, statusbar=False, return_grad=False)[source]
Evaluate a function at a set of samples using a function that only takes one sample at a time
- Parameters:
- functioncallable
A function with signature
function(sample) -> np.ndarray`
where sample is a 1d np.ndarray of shape (num_vars) and the output is a np.ndarray of values of shape (num_qoi). The output can also be a scalar
- samplesnp.ndarray (num_vars, num_samples)
The samples at which to evaluate the model
- statusbarboolean
True - print status bar showing progress to stdout False - do not print
- return_gradboolean
True - values and return gradient False - return just gradient If function does not accept the return_grad kwarg an exception will
be raised
- Returns:
- valuesnp.ndarray (num_samples, num_qoi)
The value of each requested QoI of the model for each sample