get_variance_reduction¶
-
pyapprox.control_variate_monte_carlo.
get_variance_reduction
(get_rsquared, cov, nsample_ratios)[source]¶ Compute the variance reduction:
\[\gamma = 1-r^2\]- Parameters
- covnp.ndarray (nmodels,nmodels)
The covariance C between each of the models. The highest fidelity model is the first model, i.e its variance is cov[0,0]
- nsample_ratiosnp.ndarray (nmodels-1)
The sample ratios r used to specify the number of samples of the lower fidelity models, e.g. N_i = r_i*nhf_samples, i=1,…,nmodels-1
- Returns
- gammafloat
The variance reduction