allocate_samples_acv¶
-
pyapprox.control_variate_monte_carlo.
allocate_samples_acv
(cov, costs, target_cost, estimator, standardize=True, initial_guess=None, optim_options=None, optim_method='SLSQP')[source]¶ Determine the samples to be allocated to each model
- Parameters
- covnp.ndarray (nmodels,nmodels)
The covariance C between each of the models. The highest fidelity model is the first model, i.e its variance is cov[0,0]
- costsnp.ndarray (nmodels)
The relative costs of evaluating each model
- target_costfloat
The total cost budget
- Returns
- nhf_samplesinteger
The number of samples of the high fidelity model
- nsample_ratiosnp.ndarray (nmodels-1)
The sample ratios r used to specify the number of samples of the lower fidelity models, e.g. N_i=r_i*nhf_samples,i=1,…,nmodels-1
- log10_variancefloat
The base 10 logarithm of the variance of the estimator