expanding_basis_omp_pce¶
-
pyapprox.approximate.
expanding_basis_omp_pce
(pce, train_samples, train_vals, hcross_strength=1, verbosity=1, max_num_terms=None, solver_type='lasso_lars', cv=10, restriction_tol=4.440892098500626e-16)[source]¶ Iteratively expand and restrict the polynomial basis and use cross validation to find the best basis [JESJCP2015]
- Parameters
- train_samplesnp.ndarray (nvars,nsamples)
The inputs of the function used to train the approximation
- train_valsnp.ndarray (nvars,nqoi)
The values of the function at
train_samples
- hcross_strengthfloat
The strength of the hyperbolic cross index set. hcross_strength must be in (0,1]. A value of 1 produces total degree polynomials
- cvinteger
The number of cross validation folds used to compute the cross validation error
- solver_typestring
The type of regression used to train the polynomial
‘lasso_lars’
‘lars’
‘lasso’
‘omp’
- verbosityinteger
Controls the amount of information printed to screen
- restriction_tolfloat
The tolerance used to prune inactive indices
- Returns
- result
pyapprox.approximate.ApproximateResult
Result object with the following attributes
- approx
pyapprox.multivariate_polynomials.PolynomialChaosExpansion
The PCE approximation
- scoresnp.ndarray (nqoi)
The best cross validation score for each QoI
- result
References