approximate_gaussian_process¶
-
pyapprox.approximate.
approximate_gaussian_process
(train_samples, train_vals, nu=inf, n_restarts_optimizer=5, verbosity=0)[source]¶ Compute a Gaussian process approximation of a function from a fixed data set using the Matern kernel
k(zi,zj)=1Γ(ν)2ν−1(√2νl‖where \lVert \cdot \rVert_2 is the Euclidean distance, \Gamma(\cdot) is the gamma function, K_\nu(\cdot) is the modified Bessel function.
- Parameters
- train_samplesnp.ndarray (nvars,nsamples)
The inputs of the function used to train the approximation
- train_valsnp.ndarray (nvars,nsamples)
The values of the function at
train_samples
- kernel_nustring
The parameter \nu of the Matern kernel. When \nu\to\inf the Matern kernel is equivalent to the squared-exponential kernel.
- n_restarts_optimizerint
The number of local optimizeation problems solved to find the GP hyper-parameters
- verbosityinteger
Controls the amount of information printed to screen
- Returns
- result
pyapprox.approximate.ApproximateResult
Result object with the following attributes
- approx
pyapprox.gaussian_process.GaussianProcess
The Gaussian process
- result