approximate_gaussian_process

pyapprox.approximate.approximate_gaussian_process(train_samples, train_vals, nu=inf, n_restarts_optimizer=5, verbosity=0)[source]

Compute a Gaussian process approximation of a function from a fixed data set using the Matern kernel

k(zi,zj)=1Γ(ν)2ν1(2νl

where \lVert \cdot \rVert_2 is the Euclidean distance, \Gamma(\cdot) is the gamma function, K_\nu(\cdot) is the modified Bessel function.

Parameters
train_samplesnp.ndarray (nvars,nsamples)

The inputs of the function used to train the approximation

train_valsnp.ndarray (nvars,nsamples)

The values of the function at train_samples

kernel_nustring

The parameter \nu of the Matern kernel. When \nu\to\inf the Matern kernel is equivalent to the squared-exponential kernel.

n_restarts_optimizerint

The number of local optimizeation problems solved to find the GP hyper-parameters

verbosityinteger

Controls the amount of information printed to screen

Returns
resultpyapprox.approximate.ApproximateResult

Result object with the following attributes

approxpyapprox.gaussian_process.GaussianProcess

The Gaussian process