logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4*, 5*, 6*  ⊢  
  : , :
1theorem  ⊢  
 proveit.trigonometry.complex_unit_circle_chord_length
2theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
3reference69  ⊢  
4instantiation26, 7, 8  ⊢  
  : , : , :
5instantiation9, 10  ⊢  
  : , :
6instantiation26, 11, 12  ⊢  
  : , : , :
7instantiation37, 13  ⊢  
  : , : , :
8instantiation14, 15  ⊢  
  :
9theorem  ⊢  
 proveit.logic.equality.equals_reversal
10instantiation37, 16  ⊢  
  : , : , :
11instantiation37, 17  ⊢  
  : , : , :
12instantiation26, 18, 19  ⊢  
  : , : , :
13instantiation20, 33  ⊢  
  :
14theorem  ⊢  
 proveit.numbers.exponentiation.exp_zero_eq_one
15instantiation107, 99, 21  ⊢  
  : , : , :
16instantiation26, 22, 23  ⊢  
  : , : , :
17instantiation26, 24, 25  ⊢  
  : , : , :
18instantiation26, 27, 28  ⊢  
  : , : , :
19instantiation29, 42  ⊢  
  :
20theorem  ⊢  
 proveit.numbers.multiplication.mult_zero_right
21instantiation107, 103, 30  ⊢  
  : , : , :
22instantiation31, 88, 109, 89, 90, 91, 92, 93, 33, 94  ⊢  
  : , : , : , : , : , : , :
23instantiation51, 89, 32, 88, 48, 90, 33, 92, 93, 94  ⊢  
  : , : , : , : , : , :
24instantiation37, 34  ⊢  
  : , : , :
25instantiation35, 60, 36*  ⊢  
  :
26axiom  ⊢  
 proveit.logic.equality.equals_transitivity
27instantiation37, 38  ⊢  
  : , : , :
28instantiation39, 40, 41, 42, 43*  ⊢  
  : , : , :
29theorem  ⊢  
 proveit.numbers.division.frac_one_denom
30theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.e_is_real_pos
31theorem  ⊢  
 proveit.numbers.multiplication.leftward_commutation
32theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
33theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.i_is_complex
34instantiation44, 45  ⊢  
  :
35theorem  ⊢  
 proveit.numbers.absolute_value.abs_even
36instantiation46, 47, 48, 92, 93, 94, 49*, 50*  ⊢  
  : , :
37axiom  ⊢  
 proveit.logic.equality.substitution
38instantiation51, 89, 109, 88, 52, 90, 92, 93, 57  ⊢  
  : , : , : , : , : , :
39theorem  ⊢  
 proveit.numbers.division.frac_cancel_left
40instantiation107, 54, 53  ⊢  
  : , : , :
41instantiation107, 54, 55  ⊢  
  : , : , :
42instantiation56, 93, 57  ⊢  
  : , :
43instantiation58, 92  ⊢  
  :
44theorem  ⊢  
 proveit.numbers.addition.elim_zero_left
45instantiation59, 60  ⊢  
  :
46theorem  ⊢  
 proveit.numbers.absolute_value.abs_prod
47theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat3
48instantiation61  ⊢  
  : , : , :
49instantiation63, 62  ⊢  
  :
50instantiation63, 64  ⊢  
  :
51theorem  ⊢  
 proveit.numbers.multiplication.association
52instantiation96  ⊢  
  : , :
53instantiation107, 66, 65  ⊢  
  : , : , :
54theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
55instantiation107, 66, 67  ⊢  
  : , : , :
56theorem  ⊢  
 proveit.numbers.multiplication.mult_complex_closure_bin
57instantiation107, 99, 68  ⊢  
  : , : , :
58theorem  ⊢  
 proveit.numbers.multiplication.elim_one_right
59theorem  ⊢  
 proveit.numbers.negation.complex_closure
60instantiation107, 99, 69  ⊢  
  : , : , :
61theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_3_typical_eq
62instantiation70, 109  ⊢  
  :
63theorem  ⊢  
 proveit.numbers.absolute_value.abs_non_neg_elim
64instantiation71, 72  ⊢  
  : , :
65instantiation107, 74, 73  ⊢  
  : , : , :
66theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero
67instantiation107, 74, 75  ⊢  
  : , : , :
68instantiation107, 76, 77  ⊢  
  : , : , :
69instantiation78, 79, 80  ⊢  
  : , : , :
70theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_lower_bound
71theorem  ⊢  
 proveit.numbers.ordering.relax_less
72instantiation81, 104  ⊢  
  :
73instantiation107, 83, 82  ⊢  
  : , : , :
74theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
75instantiation107, 83, 84  ⊢  
  : , : , :
76theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_nonneg_within_real
77instantiation85, 94  ⊢  
  :
78theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
79instantiation95, 86, 100  ⊢  
  : , :
80instantiation87, 88, 109, 89, 90, 91, 92, 93, 94  ⊢  
  : , : , : , : , : , :
81theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.positive_if_in_real_pos
82theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
83theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
84theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
85theorem  ⊢  
 proveit.numbers.absolute_value.abs_complex_closure
86instantiation95, 97, 98  ⊢  
  : , :
87theorem  ⊢  
 proveit.numbers.multiplication.disassociation
88axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
89theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
90theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
91instantiation96  ⊢  
  : , :
92instantiation107, 99, 97  ⊢  
  : , : , :
93instantiation107, 99, 98  ⊢  
  : , : , :
94instantiation107, 99, 100  ⊢  
  : , : , :
95theorem  ⊢  
 proveit.numbers.multiplication.mult_real_closure_bin
96theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
97instantiation107, 101, 102  ⊢  
  : , : , :
98instantiation107, 103, 104  ⊢  
  : , : , :
99theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
100assumption  ⊢  
101theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
102instantiation107, 105, 106  ⊢  
  : , : , :
103theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_pos_within_real
104theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.pi_is_real_pos
105theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
106instantiation107, 108, 109  ⊢  
  : , : , :
107theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
108theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
109theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
*equality replacement requirements