| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4*, 5*, 6* | ⊢  |
| : , :  |
1 | theorem | | ⊢  |
| proveit.trigonometry.complex_unit_circle_chord_length |
2 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
3 | reference | 69 | ⊢  |
4 | instantiation | 26, 7, 8 | ⊢  |
| : , : , :  |
5 | instantiation | 9, 10 | ⊢  |
| : , :  |
6 | instantiation | 26, 11, 12 | ⊢  |
| : , : , :  |
7 | instantiation | 37, 13 | ⊢  |
| : , : , :  |
8 | instantiation | 14, 15 | ⊢  |
| :  |
9 | theorem | | ⊢  |
| proveit.logic.equality.equals_reversal |
10 | instantiation | 37, 16 | ⊢  |
| : , : , :  |
11 | instantiation | 37, 17 | ⊢  |
| : , : , :  |
12 | instantiation | 26, 18, 19 | ⊢  |
| : , : , :  |
13 | instantiation | 20, 33 | ⊢  |
| :  |
14 | theorem | | ⊢  |
| proveit.numbers.exponentiation.exp_zero_eq_one |
15 | instantiation | 107, 99, 21 | ⊢  |
| : , : , :  |
16 | instantiation | 26, 22, 23 | ⊢  |
| : , : , :  |
17 | instantiation | 26, 24, 25 | ⊢  |
| : , : , :  |
18 | instantiation | 26, 27, 28 | ⊢  |
| : , : , :  |
19 | instantiation | 29, 42 | ⊢  |
| :  |
20 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_zero_right |
21 | instantiation | 107, 103, 30 | ⊢  |
| : , : , :  |
22 | instantiation | 31, 88, 109, 89, 90, 91, 92, 93, 33, 94 | ⊢  |
| : , : , : , : , : , : , :  |
23 | instantiation | 51, 89, 32, 88, 48, 90, 33, 92, 93, 94 | ⊢  |
| : , : , : , : , : , :  |
24 | instantiation | 37, 34 | ⊢  |
| : , : , :  |
25 | instantiation | 35, 60, 36* | ⊢  |
| :  |
26 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
27 | instantiation | 37, 38 | ⊢  |
| : , : , :  |
28 | instantiation | 39, 40, 41, 42, 43* | ⊢  |
| : , : , :  |
29 | theorem | | ⊢  |
| proveit.numbers.division.frac_one_denom |
30 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
31 | theorem | | ⊢  |
| proveit.numbers.multiplication.leftward_commutation |
32 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat3 |
33 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
34 | instantiation | 44, 45 | ⊢  |
| :  |
35 | theorem | | ⊢  |
| proveit.numbers.absolute_value.abs_even |
36 | instantiation | 46, 47, 48, 92, 93, 94, 49*, 50* | ⊢  |
| : , :  |
37 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
38 | instantiation | 51, 89, 109, 88, 52, 90, 92, 93, 57 | ⊢  |
| : , : , : , : , : , :  |
39 | theorem | | ⊢  |
| proveit.numbers.division.frac_cancel_left |
40 | instantiation | 107, 54, 53 | ⊢  |
| : , : , :  |
41 | instantiation | 107, 54, 55 | ⊢  |
| : , : , :  |
42 | instantiation | 56, 93, 57 | ⊢  |
| : , :  |
43 | instantiation | 58, 92 | ⊢  |
| :  |
44 | theorem | | ⊢  |
| proveit.numbers.addition.elim_zero_left |
45 | instantiation | 59, 60 | ⊢  |
| :  |
46 | theorem | | ⊢  |
| proveit.numbers.absolute_value.abs_prod |
47 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
48 | instantiation | 61 | ⊢  |
| : , : , :  |
49 | instantiation | 63, 62 | ⊢  |
| :  |
50 | instantiation | 63, 64 | ⊢  |
| :  |
51 | theorem | | ⊢  |
| proveit.numbers.multiplication.association |
52 | instantiation | 96 | ⊢  |
| : , :  |
53 | instantiation | 107, 66, 65 | ⊢  |
| : , : , :  |
54 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
55 | instantiation | 107, 66, 67 | ⊢  |
| : , : , :  |
56 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_complex_closure_bin |
57 | instantiation | 107, 99, 68 | ⊢  |
| : , : , :  |
58 | theorem | | ⊢  |
| proveit.numbers.multiplication.elim_one_right |
59 | theorem | | ⊢  |
| proveit.numbers.negation.complex_closure |
60 | instantiation | 107, 99, 69 | ⊢  |
| : , : , :  |
61 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
62 | instantiation | 70, 109 | ⊢  |
| :  |
63 | theorem | | ⊢  |
| proveit.numbers.absolute_value.abs_non_neg_elim |
64 | instantiation | 71, 72 | ⊢  |
| : , :  |
65 | instantiation | 107, 74, 73 | ⊢  |
| : , : , :  |
66 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
67 | instantiation | 107, 74, 75 | ⊢  |
| : , : , :  |
68 | instantiation | 107, 76, 77 | ⊢  |
| : , : , :  |
69 | instantiation | 78, 79, 80 | ⊢  |
| : , : , :  |
70 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
71 | theorem | | ⊢  |
| proveit.numbers.ordering.relax_less |
72 | instantiation | 81, 104 | ⊢  |
| :  |
73 | instantiation | 107, 83, 82 | ⊢  |
| : , : , :  |
74 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
75 | instantiation | 107, 83, 84 | ⊢  |
| : , : , :  |
76 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.real_nonneg_within_real |
77 | instantiation | 85, 94 | ⊢  |
| :  |
78 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
79 | instantiation | 95, 86, 100 | ⊢  |
| : , :  |
80 | instantiation | 87, 88, 109, 89, 90, 91, 92, 93, 94 | ⊢  |
| : , : , : , : , : , :  |
81 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.positive_if_in_real_pos |
82 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
83 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
84 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat1 |
85 | theorem | | ⊢  |
| proveit.numbers.absolute_value.abs_complex_closure |
86 | instantiation | 95, 97, 98 | ⊢  |
| : , :  |
87 | theorem | | ⊢  |
| proveit.numbers.multiplication.disassociation |
88 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
89 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
90 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
91 | instantiation | 96 | ⊢  |
| : , :  |
92 | instantiation | 107, 99, 97 | ⊢  |
| : , : , :  |
93 | instantiation | 107, 99, 98 | ⊢  |
| : , : , :  |
94 | instantiation | 107, 99, 100 | ⊢  |
| : , : , :  |
95 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_real_closure_bin |
96 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
97 | instantiation | 107, 101, 102 | ⊢  |
| : , : , :  |
98 | instantiation | 107, 103, 104 | ⊢  |
| : , : , :  |
99 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
100 | assumption | | ⊢  |
101 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
102 | instantiation | 107, 105, 106 | ⊢  |
| : , : , :  |
103 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
104 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
105 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
106 | instantiation | 107, 108, 109 | ⊢  |
| : , : , :  |
107 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
108 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
109 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |