logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2  ⊢  
  :
1theorem  ⊢  
 proveit.numbers.addition.elim_zero_left
2instantiation3, 4  ⊢  
  :
3theorem  ⊢  
 proveit.numbers.negation.complex_closure
4instantiation30, 22, 5  ⊢  
  : , : , :
5instantiation6, 7, 8  ⊢  
  : , : , :
6theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
7instantiation18, 9, 23  ⊢  
  : , :
8instantiation10, 11, 32, 12, 13, 14, 15, 16, 17  ⊢  
  : , : , : , : , : , :
9instantiation18, 20, 21  ⊢  
  : , :
10theorem  ⊢  
 proveit.numbers.multiplication.disassociation
11axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
12theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
13theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
14instantiation19  ⊢  
  : , :
15instantiation30, 22, 20  ⊢  
  : , : , :
16instantiation30, 22, 21  ⊢  
  : , : , :
17instantiation30, 22, 23  ⊢  
  : , : , :
18theorem  ⊢  
 proveit.numbers.multiplication.mult_real_closure_bin
19theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
20instantiation30, 24, 25  ⊢  
  : , : , :
21instantiation30, 26, 27  ⊢  
  : , : , :
22theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
23assumption  ⊢  
24theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
25instantiation30, 28, 29  ⊢  
  : , : , :
26theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_pos_within_real
27theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.pi_is_real_pos
28theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
29instantiation30, 31, 32  ⊢  
  : , : , :
30theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
31theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
32theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2