| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢  |
| : , : , :  |
1 | reference | 9 | ⊢  |
2 | instantiation | 16, 4 | ⊢  |
| : , : , :  |
3 | instantiation | 9, 5, 6 | ⊢  |
| : , : , :  |
4 | instantiation | 9, 7, 8 | ⊢  |
| : , : , :  |
5 | instantiation | 9, 10, 11 | ⊢  |
| : , : , :  |
6 | instantiation | 12, 21 | ⊢  |
| :  |
7 | instantiation | 16, 13 | ⊢  |
| : , : , :  |
8 | instantiation | 14, 39, 15* | ⊢  |
| :  |
9 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
10 | instantiation | 16, 17 | ⊢  |
| : , : , :  |
11 | instantiation | 18, 19, 20, 21, 22* | ⊢  |
| : , : , :  |
12 | theorem | | ⊢  |
| proveit.numbers.division.frac_one_denom |
13 | instantiation | 23, 24 | ⊢  |
| :  |
14 | theorem | | ⊢  |
| proveit.numbers.absolute_value.abs_even |
15 | instantiation | 25, 26, 27, 71, 72, 73, 28*, 29* | ⊢  |
| : , :  |
16 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
17 | instantiation | 30, 68, 88, 67, 31, 69, 71, 72, 36 | ⊢  |
| : , : , : , : , : , :  |
18 | theorem | | ⊢  |
| proveit.numbers.division.frac_cancel_left |
19 | instantiation | 86, 33, 32 | ⊢  |
| : , : , :  |
20 | instantiation | 86, 33, 34 | ⊢  |
| : , : , :  |
21 | instantiation | 35, 72, 36 | ⊢  |
| : , :  |
22 | instantiation | 37, 71 | ⊢  |
| :  |
23 | theorem | | ⊢  |
| proveit.numbers.addition.elim_zero_left |
24 | instantiation | 38, 39 | ⊢  |
| :  |
25 | theorem | | ⊢  |
| proveit.numbers.absolute_value.abs_prod |
26 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
27 | instantiation | 40 | ⊢  |
| : , : , :  |
28 | instantiation | 42, 41 | ⊢  |
| :  |
29 | instantiation | 42, 43 | ⊢  |
| :  |
30 | theorem | | ⊢  |
| proveit.numbers.multiplication.association |
31 | instantiation | 75 | ⊢  |
| : , :  |
32 | instantiation | 86, 45, 44 | ⊢  |
| : , : , :  |
33 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
34 | instantiation | 86, 45, 46 | ⊢  |
| : , : , :  |
35 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_complex_closure_bin |
36 | instantiation | 86, 78, 47 | ⊢  |
| : , : , :  |
37 | theorem | | ⊢  |
| proveit.numbers.multiplication.elim_one_right |
38 | theorem | | ⊢  |
| proveit.numbers.negation.complex_closure |
39 | instantiation | 86, 78, 48 | ⊢  |
| : , : , :  |
40 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
41 | instantiation | 49, 88 | ⊢  |
| :  |
42 | theorem | | ⊢  |
| proveit.numbers.absolute_value.abs_non_neg_elim |
43 | instantiation | 50, 51 | ⊢  |
| : , :  |
44 | instantiation | 86, 53, 52 | ⊢  |
| : , : , :  |
45 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
46 | instantiation | 86, 53, 54 | ⊢  |
| : , : , :  |
47 | instantiation | 86, 55, 56 | ⊢  |
| : , : , :  |
48 | instantiation | 57, 58, 59 | ⊢  |
| : , : , :  |
49 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
50 | theorem | | ⊢  |
| proveit.numbers.ordering.relax_less |
51 | instantiation | 60, 83 | ⊢  |
| :  |
52 | instantiation | 86, 62, 61 | ⊢  |
| : , : , :  |
53 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
54 | instantiation | 86, 62, 63 | ⊢  |
| : , : , :  |
55 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.real_nonneg_within_real |
56 | instantiation | 64, 73 | ⊢  |
| :  |
57 | theorem | | ⊢  |
| proveit.logic.equality.sub_right_side_into |
58 | instantiation | 74, 65, 79 | ⊢  |
| : , :  |
59 | instantiation | 66, 67, 88, 68, 69, 70, 71, 72, 73 | ⊢  |
| : , : , : , : , : , :  |
60 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.positive_if_in_real_pos |
61 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
62 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
63 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat1 |
64 | theorem | | ⊢  |
| proveit.numbers.absolute_value.abs_complex_closure |
65 | instantiation | 74, 76, 77 | ⊢  |
| : , :  |
66 | theorem | | ⊢  |
| proveit.numbers.multiplication.disassociation |
67 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
68 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
69 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
70 | instantiation | 75 | ⊢  |
| : , :  |
71 | instantiation | 86, 78, 76 | ⊢  |
| : , : , :  |
72 | instantiation | 86, 78, 77 | ⊢  |
| : , : , :  |
73 | instantiation | 86, 78, 79 | ⊢  |
| : , : , :  |
74 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_real_closure_bin |
75 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
76 | instantiation | 86, 80, 81 | ⊢  |
| : , : , :  |
77 | instantiation | 86, 82, 83 | ⊢  |
| : , : , :  |
78 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
79 | assumption | | ⊢  |
80 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
81 | instantiation | 86, 84, 85 | ⊢  |
| : , : , :  |
82 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
83 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
84 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
85 | instantiation | 86, 87, 88 | ⊢  |
| : , : , :  |
86 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
87 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
88 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |