| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4* | ⊢ |
| : , : |
1 | theorem | | ⊢ |
| proveit.trigonometry.complex_unit_circle_chord_length |
2 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
3 | reference | 51 | ⊢ |
4 | instantiation | 12, 5, 6 | ⊢ |
| : , : , : |
5 | instantiation | 19, 7 | ⊢ |
| : , : , : |
6 | instantiation | 12, 8, 9 | ⊢ |
| : , : , : |
7 | instantiation | 12, 10, 11 | ⊢ |
| : , : , : |
8 | instantiation | 12, 13, 14 | ⊢ |
| : , : , : |
9 | instantiation | 15, 24 | ⊢ |
| : |
10 | instantiation | 19, 16 | ⊢ |
| : , : , : |
11 | instantiation | 17, 42, 18* | ⊢ |
| : |
12 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
13 | instantiation | 19, 20 | ⊢ |
| : , : , : |
14 | instantiation | 21, 22, 23, 24, 25* | ⊢ |
| : , : , : |
15 | theorem | | ⊢ |
| proveit.numbers.division.frac_one_denom |
16 | instantiation | 26, 27 | ⊢ |
| : |
17 | theorem | | ⊢ |
| proveit.numbers.absolute_value.abs_even |
18 | instantiation | 28, 29, 30, 74, 75, 76, 31*, 32* | ⊢ |
| : , : |
19 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
20 | instantiation | 33, 71, 91, 70, 34, 72, 74, 75, 39 | ⊢ |
| : , : , : , : , : , : |
21 | theorem | | ⊢ |
| proveit.numbers.division.frac_cancel_left |
22 | instantiation | 89, 36, 35 | ⊢ |
| : , : , : |
23 | instantiation | 89, 36, 37 | ⊢ |
| : , : , : |
24 | instantiation | 38, 75, 39 | ⊢ |
| : , : |
25 | instantiation | 40, 74 | ⊢ |
| : |
26 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
27 | instantiation | 41, 42 | ⊢ |
| : |
28 | theorem | | ⊢ |
| proveit.numbers.absolute_value.abs_prod |
29 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
30 | instantiation | 43 | ⊢ |
| : , : , : |
31 | instantiation | 45, 44 | ⊢ |
| : |
32 | instantiation | 45, 46 | ⊢ |
| : |
33 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
34 | instantiation | 78 | ⊢ |
| : , : |
35 | instantiation | 89, 48, 47 | ⊢ |
| : , : , : |
36 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
37 | instantiation | 89, 48, 49 | ⊢ |
| : , : , : |
38 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
39 | instantiation | 89, 81, 50 | ⊢ |
| : , : , : |
40 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
41 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
42 | instantiation | 89, 81, 51 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
44 | instantiation | 52, 91 | ⊢ |
| : |
45 | theorem | | ⊢ |
| proveit.numbers.absolute_value.abs_non_neg_elim |
46 | instantiation | 53, 54 | ⊢ |
| : , : |
47 | instantiation | 89, 56, 55 | ⊢ |
| : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
49 | instantiation | 89, 56, 57 | ⊢ |
| : , : , : |
50 | instantiation | 89, 58, 59 | ⊢ |
| : , : , : |
51 | instantiation | 60, 61, 62 | ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
53 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
54 | instantiation | 63, 86 | ⊢ |
| : |
55 | instantiation | 89, 65, 64 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
57 | instantiation | 89, 65, 66 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_nonneg_within_real |
59 | instantiation | 67, 76 | ⊢ |
| : |
60 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
61 | instantiation | 77, 68, 82 | ⊢ |
| : , : |
62 | instantiation | 69, 70, 91, 71, 72, 73, 74, 75, 76 | ⊢ |
| : , : , : , : , : , : |
63 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.positive_if_in_real_pos |
64 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
65 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
66 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
67 | theorem | | ⊢ |
| proveit.numbers.absolute_value.abs_complex_closure |
68 | instantiation | 77, 79, 80 | ⊢ |
| : , : |
69 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
70 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
71 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
72 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
73 | instantiation | 78 | ⊢ |
| : , : |
74 | instantiation | 89, 81, 79 | ⊢ |
| : , : , : |
75 | instantiation | 89, 81, 80 | ⊢ |
| : , : , : |
76 | instantiation | 89, 81, 82 | ⊢ |
| : , : , : |
77 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
78 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
79 | instantiation | 89, 83, 84 | ⊢ |
| : , : , : |
80 | instantiation | 89, 85, 86 | ⊢ |
| : , : , : |
81 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
82 | assumption | | ⊢ |
83 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
84 | instantiation | 89, 87, 88 | ⊢ |
| : , : , : |
85 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
86 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
88 | instantiation | 89, 90, 91 | ⊢ |
| : , : , : |
89 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
90 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
91 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |