| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , , , , ⊢ |
| : , : , : |
1 | reference | 32 | ⊢ |
2 | instantiation | 4, 5 | , , , ⊢ |
| : , : , : |
3 | instantiation | 43, 6, 7, 8 | , , , , , , ⊢ |
| : , : , : , : |
4 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
5 | instantiation | 32, 9, 10 | , , , ⊢ |
| : , : , : |
6 | instantiation | 11, 126, 79, 78, 41, 12 | , , , , , , ⊢ |
| : , : , : , : , : , : |
7 | instantiation | 39, 78, 40, 119, 41, 13 | , , , , , , ⊢ |
| : , : , : , : , : , : |
8 | instantiation | 32, 14, 15 | , , , , , , ⊢ |
| : , : , : |
9 | instantiation | 62, 79, 77, 126, 80, 16 | , , , ⊢ |
| : , : , : , : , : |
10 | instantiation | 47, 40, 126, 16 | , , , ⊢ |
| : , : , : |
11 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.scalar_mult_absorption |
12 | instantiation | 109, 17, 18 | , , , , , ⊢ |
| : , : , : |
13 | instantiation | 109, 19, 20 | , , , , , , ⊢ |
| : , : , : |
14 | instantiation | 32, 21, 22 | , , , , , , ⊢ |
| : , : , : |
15 | instantiation | 64, 90, 78, 23, 132, 126, 128, 66, 67, 24* | , , , , , , ⊢ |
| : , : , : , : |
16 | instantiation | 25, 138, 139, 140 | , , ⊢ |
| : , : , : |
17 | instantiation | 54, 26, 29 | , , , , , ⊢ |
| : , : , : |
18 | instantiation | 43, 27, 28, 29 | , , , , , ⊢ |
| : , : , : , : |
19 | instantiation | 82, 128, 30 | , , , , , , ⊢ |
| : , : |
20 | instantiation | 121, 31, 49 | ⊢ |
| : , : , : |
21 | instantiation | 32, 33, 34 | , , , , , , ⊢ |
| : , : , : |
22 | instantiation | 62, 78, 132, 113, 66, 35 | , , , , , , ⊢ |
| : , : , : , : , : |
23 | instantiation | 100 | ⊢ |
| : , : , : |
24 | instantiation | 47, 122, 36, 66, 67 | , , , , , , ⊢ |
| : , : , : |
25 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_matrix_in_QmultCodomain |
26 | instantiation | 109, 37, 38 | , , , , , ⊢ |
| : , : , : |
27 | instantiation | 39, 79, 40, 78, 41, 42 | , , , , , ⊢ |
| : , : , : , : , : , : |
28 | instantiation | 43, 44, 45, 46 | , , , , , ⊢ |
| : , : , : , : |
29 | instantiation | 47, 122, 93, 66, 67 | , , , , , ⊢ |
| : , : , : |
30 | instantiation | 94, 50 | , , , , , ⊢ |
| : |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
32 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
33 | instantiation | 62, 48, 77, 128, 49, 80, 50 | , , , , , , ⊢ |
| : , : , : , : , : |
34 | instantiation | 62, 78, 126, 123, 66, 51 | , , , , , , ⊢ |
| : , : , : , : , : |
35 | instantiation | 109, 52, 53 | , , , , , ⊢ |
| : , : , : |
36 | instantiation | 54, 55, 56 | , , ⊢ |
| : , : , : |
37 | instantiation | 114, 133, 134, 57, 116 | , , , , , ⊢ |
| : , : , : , : |
38 | instantiation | 121, 122, 58 | ⊢ |
| : , : , : |
39 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_disassociation |
40 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
41 | instantiation | 130 | ⊢ |
| : , : |
42 | instantiation | 109, 59, 60 | , , , , , ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
44 | instantiation | 62, 61, 77, 128, 84, 80, 95 | , , , , , ⊢ |
| : , : , : , : , : |
45 | instantiation | 62, 79, 78, 132, 66, 63 | , , , , , ⊢ |
| : , : , : , : , : |
46 | instantiation | 64, 122, 78, 65, 132, 128, 66, 67 | , , , , , ⊢ |
| : , : , : , : |
47 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.scalar_mult_factorization |
48 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
49 | instantiation | 68 | ⊢ |
| : , : , : , : |
50 | instantiation | 109, 69, 70 | , , , , , ⊢ |
| : , : , : |
51 | instantiation | 109, 71, 72 | , , , , , ⊢ |
| : , : , : |
52 | instantiation | 114, 133, 134, 73, 116 | , , , , , ⊢ |
| : , : , : , : |
53 | instantiation | 121, 90, 74 | ⊢ |
| : , : , : |
54 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
55 | instantiation | 103, 75, 128 | , , ⊢ |
| : , : |
56 | instantiation | 76, 77, 78, 79, 80, 119, 132, 126, 128 | , , ⊢ |
| : , : , : , : , : , : |
57 | instantiation | 124, 133, 134, 81 | , , , , ⊢ |
| : , : , : |
58 | instantiation | 130 | ⊢ |
| : , : |
59 | instantiation | 82, 128, 83 | , , , , , ⊢ |
| : , : |
60 | instantiation | 121, 90, 84 | ⊢ |
| : , : , : |
61 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
62 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_pulling_scalar_out_front |
63 | instantiation | 109, 85, 86 | , , , , ⊢ |
| : , : , : |
64 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_scalar_association |
65 | instantiation | 130 | ⊢ |
| : , : |
66 | instantiation | 130 | ⊢ |
| : , : |
67 | instantiation | 114, 133, 134, 135, 116 | , , , ⊢ |
| : , : , : , : |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
69 | instantiation | 114, 133, 134, 87, 116 | , , , , , ⊢ |
| : , : , : , : |
70 | instantiation | 121, 90, 88 | ⊢ |
| : , : , : |
71 | instantiation | 114, 133, 134, 89, 116 | , , , , , ⊢ |
| : , : , : , : |
72 | instantiation | 121, 90, 91 | ⊢ |
| : , : , : |
73 | instantiation | 124, 133, 134, 92 | , , , , ⊢ |
| : , : , : |
74 | instantiation | 100 | ⊢ |
| : , : , : |
75 | instantiation | 103, 132, 126 | , ⊢ |
| : , : |
76 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
77 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
78 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
79 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
80 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
81 | instantiation | 131, 93, 133, 134, 135 | , , , , ⊢ |
| : , : , : , : |
82 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_complex_right_closure |
83 | instantiation | 94, 95 | , , , , ⊢ |
| : |
84 | instantiation | 100 | ⊢ |
| : , : , : |
85 | instantiation | 114, 133, 134, 96, 116 | , , , , ⊢ |
| : , : , : , : |
86 | instantiation | 121, 122, 97 | ⊢ |
| : , : , : |
87 | instantiation | 124, 133, 134, 98 | , , , , ⊢ |
| : , : , : |
88 | instantiation | 100 | ⊢ |
| : , : , : |
89 | instantiation | 124, 133, 134, 99 | , , , , ⊢ |
| : , : , : |
90 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
91 | instantiation | 100 | ⊢ |
| : , : , : |
92 | instantiation | 109, 101, 102 | , , , , ⊢ |
| : , : , : |
93 | instantiation | 103, 132, 128 | , ⊢ |
| : , : |
94 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_nested_closure |
95 | instantiation | 109, 104, 105 | , , , , ⊢ |
| : , : , : |
96 | instantiation | 124, 133, 134, 106 | , , , ⊢ |
| : , : , : |
97 | instantiation | 130 | ⊢ |
| : , : |
98 | instantiation | 109, 107, 108 | , , , , ⊢ |
| : , : , : |
99 | instantiation | 109, 110, 111 | , , , , ⊢ |
| : , : , : |
100 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
101 | instantiation | 131, 112, 133, 134, 135 | , , , , ⊢ |
| : , : , : , : |
102 | instantiation | 121, 122, 113 | ⊢ |
| : , : , : |
103 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
104 | instantiation | 114, 133, 134, 115, 116 | , , , , ⊢ |
| : , : , : , : |
105 | instantiation | 121, 122, 117 | ⊢ |
| : , : , : |
106 | instantiation | 131, 128, 133, 134, 135 | , , , ⊢ |
| : , : , : , : |
107 | instantiation | 131, 118, 133, 134, 135 | , , , , ⊢ |
| : , : , : , : |
108 | instantiation | 121, 122, 119 | ⊢ |
| : , : , : |
109 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
110 | instantiation | 131, 120, 133, 134, 135 | , , , , ⊢ |
| : , : , : , : |
111 | instantiation | 121, 122, 123 | ⊢ |
| : , : , : |
112 | instantiation | 127, 126, 129, 128 | , ⊢ |
| : , : , : |
113 | instantiation | 130 | ⊢ |
| : , : |
114 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_ket_in_QmultCodomain |
115 | instantiation | 124, 133, 134, 125 | , , , ⊢ |
| : , : , : |
116 | assumption | | ⊢ |
117 | instantiation | 130 | ⊢ |
| : , : |
118 | instantiation | 127, 132, 129, 126 | , ⊢ |
| : , : , : |
119 | instantiation | 130 | ⊢ |
| : , : |
120 | instantiation | 127, 128, 129, 132 | , ⊢ |
| : , : , : |
121 | axiom | | ⊢ |
| proveit.physics.quantum.algebra.multi_qmult_def |
122 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
123 | instantiation | 130 | ⊢ |
| : , : |
124 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_is_linmap |
125 | instantiation | 131, 132, 133, 134, 135 | , , , ⊢ |
| : , : , : , : |
126 | assumption | | ⊢ |
127 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_complex_ket_closure |
128 | assumption | | ⊢ |
129 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
130 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
131 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_complex_op_closure |
132 | assumption | | ⊢ |
133 | instantiation | 136, 139 | ⊢ |
| : |
134 | instantiation | 136, 138 | ⊢ |
| : |
135 | instantiation | 137, 138, 139, 140 | , , ⊢ |
| : , : , : |
136 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
137 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
138 | assumption | | ⊢ |
139 | assumption | | ⊢ |
140 | assumption | | ⊢ |
*equality replacement requirements |