| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | , , , , , , ⊢ |
| : , : , : , : |
1 | reference | 35 | ⊢ |
2 | instantiation | 5, 118, 71, 70, 33, 6 | , , , , , , ⊢ |
| : , : , : , : , : , : |
3 | instantiation | 31, 70, 32, 111, 33, 7 | , , , , , , ⊢ |
| : , : , : , : , : , : |
4 | instantiation | 24, 8, 9 | , , , , , , ⊢ |
| : , : , : |
5 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.scalar_mult_absorption |
6 | instantiation | 101, 10, 11 | , , , , , ⊢ |
| : , : , : |
7 | instantiation | 101, 12, 13 | , , , , , , ⊢ |
| : , : , : |
8 | instantiation | 24, 14, 15 | , , , , , , ⊢ |
| : , : , : |
9 | instantiation | 56, 82, 70, 16, 124, 118, 120, 58, 59, 17* | , , , , , , ⊢ |
| : , : , : , : |
10 | instantiation | 46, 18, 21 | , , , , , ⊢ |
| : , : , : |
11 | instantiation | 35, 19, 20, 21 | , , , , , ⊢ |
| : , : , : , : |
12 | instantiation | 74, 120, 22 | , , , , , , ⊢ |
| : , : |
13 | instantiation | 113, 23, 41 | ⊢ |
| : , : , : |
14 | instantiation | 24, 25, 26 | , , , , , , ⊢ |
| : , : , : |
15 | instantiation | 54, 70, 124, 105, 58, 27 | , , , , , , ⊢ |
| : , : , : , : , : |
16 | instantiation | 92 | ⊢ |
| : , : , : |
17 | instantiation | 39, 114, 28, 58, 59 | , , , , , , ⊢ |
| : , : , : |
18 | instantiation | 101, 29, 30 | , , , , , ⊢ |
| : , : , : |
19 | instantiation | 31, 71, 32, 70, 33, 34 | , , , , , ⊢ |
| : , : , : , : , : , : |
20 | instantiation | 35, 36, 37, 38 | , , , , , ⊢ |
| : , : , : , : |
21 | instantiation | 39, 114, 85, 58, 59 | , , , , , ⊢ |
| : , : , : |
22 | instantiation | 86, 42 | , , , , , ⊢ |
| : |
23 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
24 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
25 | instantiation | 54, 40, 69, 120, 41, 72, 42 | , , , , , , ⊢ |
| : , : , : , : , : |
26 | instantiation | 54, 70, 118, 115, 58, 43 | , , , , , , ⊢ |
| : , : , : , : , : |
27 | instantiation | 101, 44, 45 | , , , , , ⊢ |
| : , : , : |
28 | instantiation | 46, 47, 48 | , , ⊢ |
| : , : , : |
29 | instantiation | 106, 125, 126, 49, 108 | , , , , , ⊢ |
| : , : , : , : |
30 | instantiation | 113, 114, 50 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_disassociation |
32 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
33 | instantiation | 122 | ⊢ |
| : , : |
34 | instantiation | 101, 51, 52 | , , , , , ⊢ |
| : , : , : |
35 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
36 | instantiation | 54, 53, 69, 120, 76, 72, 87 | , , , , , ⊢ |
| : , : , : , : , : |
37 | instantiation | 54, 71, 70, 124, 58, 55 | , , , , , ⊢ |
| : , : , : , : , : |
38 | instantiation | 56, 114, 70, 57, 124, 120, 58, 59 | , , , , , ⊢ |
| : , : , : , : |
39 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.scalar_mult_factorization |
40 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
41 | instantiation | 60 | ⊢ |
| : , : , : , : |
42 | instantiation | 101, 61, 62 | , , , , , ⊢ |
| : , : , : |
43 | instantiation | 101, 63, 64 | , , , , , ⊢ |
| : , : , : |
44 | instantiation | 106, 125, 126, 65, 108 | , , , , , ⊢ |
| : , : , : , : |
45 | instantiation | 113, 82, 66 | ⊢ |
| : , : , : |
46 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
47 | instantiation | 95, 67, 120 | , , ⊢ |
| : , : |
48 | instantiation | 68, 69, 70, 71, 72, 111, 124, 118, 120 | , , ⊢ |
| : , : , : , : , : , : |
49 | instantiation | 116, 125, 126, 73 | , , , , ⊢ |
| : , : , : |
50 | instantiation | 122 | ⊢ |
| : , : |
51 | instantiation | 74, 120, 75 | , , , , , ⊢ |
| : , : |
52 | instantiation | 113, 82, 76 | ⊢ |
| : , : , : |
53 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
54 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_pulling_scalar_out_front |
55 | instantiation | 101, 77, 78 | , , , , ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_scalar_association |
57 | instantiation | 122 | ⊢ |
| : , : |
58 | instantiation | 122 | ⊢ |
| : , : |
59 | instantiation | 106, 125, 126, 127, 108 | , , , ⊢ |
| : , : , : , : |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
61 | instantiation | 106, 125, 126, 79, 108 | , , , , , ⊢ |
| : , : , : , : |
62 | instantiation | 113, 82, 80 | ⊢ |
| : , : , : |
63 | instantiation | 106, 125, 126, 81, 108 | , , , , , ⊢ |
| : , : , : , : |
64 | instantiation | 113, 82, 83 | ⊢ |
| : , : , : |
65 | instantiation | 116, 125, 126, 84 | , , , , ⊢ |
| : , : , : |
66 | instantiation | 92 | ⊢ |
| : , : , : |
67 | instantiation | 95, 124, 118 | , ⊢ |
| : , : |
68 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
69 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
71 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
72 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
73 | instantiation | 123, 85, 125, 126, 127 | , , , , ⊢ |
| : , : , : , : |
74 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_complex_right_closure |
75 | instantiation | 86, 87 | , , , , ⊢ |
| : |
76 | instantiation | 92 | ⊢ |
| : , : , : |
77 | instantiation | 106, 125, 126, 88, 108 | , , , , ⊢ |
| : , : , : , : |
78 | instantiation | 113, 114, 89 | ⊢ |
| : , : , : |
79 | instantiation | 116, 125, 126, 90 | , , , , ⊢ |
| : , : , : |
80 | instantiation | 92 | ⊢ |
| : , : , : |
81 | instantiation | 116, 125, 126, 91 | , , , , ⊢ |
| : , : , : |
82 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
83 | instantiation | 92 | ⊢ |
| : , : , : |
84 | instantiation | 101, 93, 94 | , , , , ⊢ |
| : , : , : |
85 | instantiation | 95, 124, 120 | , ⊢ |
| : , : |
86 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_nested_closure |
87 | instantiation | 101, 96, 97 | , , , , ⊢ |
| : , : , : |
88 | instantiation | 116, 125, 126, 98 | , , , ⊢ |
| : , : , : |
89 | instantiation | 122 | ⊢ |
| : , : |
90 | instantiation | 101, 99, 100 | , , , , ⊢ |
| : , : , : |
91 | instantiation | 101, 102, 103 | , , , , ⊢ |
| : , : , : |
92 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
93 | instantiation | 123, 104, 125, 126, 127 | , , , , ⊢ |
| : , : , : , : |
94 | instantiation | 113, 114, 105 | ⊢ |
| : , : , : |
95 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
96 | instantiation | 106, 125, 126, 107, 108 | , , , , ⊢ |
| : , : , : , : |
97 | instantiation | 113, 114, 109 | ⊢ |
| : , : , : |
98 | instantiation | 123, 120, 125, 126, 127 | , , , ⊢ |
| : , : , : , : |
99 | instantiation | 123, 110, 125, 126, 127 | , , , , ⊢ |
| : , : , : , : |
100 | instantiation | 113, 114, 111 | ⊢ |
| : , : , : |
101 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
102 | instantiation | 123, 112, 125, 126, 127 | , , , , ⊢ |
| : , : , : , : |
103 | instantiation | 113, 114, 115 | ⊢ |
| : , : , : |
104 | instantiation | 119, 118, 121, 120 | , ⊢ |
| : , : , : |
105 | instantiation | 122 | ⊢ |
| : , : |
106 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_ket_in_QmultCodomain |
107 | instantiation | 116, 125, 126, 117 | , , , ⊢ |
| : , : , : |
108 | assumption | | ⊢ |
109 | instantiation | 122 | ⊢ |
| : , : |
110 | instantiation | 119, 124, 121, 118 | , ⊢ |
| : , : , : |
111 | instantiation | 122 | ⊢ |
| : , : |
112 | instantiation | 119, 120, 121, 124 | , ⊢ |
| : , : , : |
113 | axiom | | ⊢ |
| proveit.physics.quantum.algebra.multi_qmult_def |
114 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
115 | instantiation | 122 | ⊢ |
| : , : |
116 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_is_linmap |
117 | instantiation | 123, 124, 125, 126, 127 | , , , ⊢ |
| : , : , : , : |
118 | assumption | | ⊢ |
119 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_complex_ket_closure |
120 | assumption | | ⊢ |
121 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
122 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
123 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_complex_op_closure |
124 | assumption | | ⊢ |
125 | instantiation | 128, 131 | ⊢ |
| : |
126 | instantiation | 128, 130 | ⊢ |
| : |
127 | instantiation | 129, 130, 131, 132 | , , ⊢ |
| : , : , : |
128 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
129 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
130 | assumption | | ⊢ |
131 | assumption | | ⊢ |
132 | assumption | | ⊢ |
*equality replacement requirements |