| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , , , , ⊢ |
| : , : , : |
1 | reference | 9 | ⊢ |
2 | instantiation | 9, 4, 5 | , , , , , , ⊢ |
| : , : , : |
3 | instantiation | 6, 45, 37, 7, 76, 72, 74, 20, 15, 8* | , , , , , , ⊢ |
| : , : , : , : |
4 | instantiation | 9, 10, 11 | , , , , , , ⊢ |
| : , : , : |
5 | instantiation | 19, 37, 76, 61, 20, 12 | , , , , , , ⊢ |
| : , : , : , : , : |
6 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_scalar_association |
7 | instantiation | 52 | ⊢ |
| : , : , : |
8 | instantiation | 13, 70, 14, 20, 15 | , , , , , , ⊢ |
| : , : , : |
9 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
10 | instantiation | 19, 16, 36, 74, 17, 39, 18 | , , , , , , ⊢ |
| : , : , : , : , : |
11 | instantiation | 19, 37, 72, 71, 20, 21 | , , , , , , ⊢ |
| : , : , : , : , : |
12 | instantiation | 57, 22, 23 | , , , , , ⊢ |
| : , : , : |
13 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.scalar_mult_factorization |
14 | instantiation | 24, 25, 26 | , , ⊢ |
| : , : , : |
15 | instantiation | 42, 66, 67, 68, 44 | , , , ⊢ |
| : , : , : , : |
16 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
17 | instantiation | 27 | ⊢ |
| : , : , : , : |
18 | instantiation | 57, 28, 29 | , , , , , ⊢ |
| : , : , : |
19 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_pulling_scalar_out_front |
20 | instantiation | 82 | ⊢ |
| : , : |
21 | instantiation | 57, 30, 31 | , , , , , ⊢ |
| : , : , : |
22 | instantiation | 42, 66, 67, 32, 44 | , , , , , ⊢ |
| : , : , : , : |
23 | instantiation | 69, 45, 33 | ⊢ |
| : , : , : |
24 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
25 | instantiation | 48, 34, 74 | , , ⊢ |
| : , : |
26 | instantiation | 35, 36, 37, 38, 39, 63, 76, 72, 74 | , , ⊢ |
| : , : , : , : , : , : |
27 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
28 | instantiation | 42, 66, 67, 40, 44 | , , , , , ⊢ |
| : , : , : , : |
29 | instantiation | 69, 45, 41 | ⊢ |
| : , : , : |
30 | instantiation | 42, 66, 67, 43, 44 | , , , , , ⊢ |
| : , : , : , : |
31 | instantiation | 69, 45, 46 | ⊢ |
| : , : , : |
32 | instantiation | 50, 66, 67, 47 | , , , , ⊢ |
| : , : , : |
33 | instantiation | 52 | ⊢ |
| : , : , : |
34 | instantiation | 48, 76, 72 | , ⊢ |
| : , : |
35 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
36 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
37 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
38 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
39 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
40 | instantiation | 50, 66, 67, 49 | , , , , ⊢ |
| : , : , : |
41 | instantiation | 52 | ⊢ |
| : , : , : |
42 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_ket_in_QmultCodomain |
43 | instantiation | 50, 66, 67, 51 | , , , , ⊢ |
| : , : , : |
44 | assumption | | ⊢ |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
46 | instantiation | 52 | ⊢ |
| : , : , : |
47 | instantiation | 57, 53, 54 | , , , , ⊢ |
| : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
49 | instantiation | 57, 55, 56 | , , , , ⊢ |
| : , : , : |
50 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_is_linmap |
51 | instantiation | 57, 58, 59 | , , , , ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
53 | instantiation | 64, 60, 66, 67, 68 | , , , , ⊢ |
| : , : , : , : |
54 | instantiation | 69, 70, 61 | ⊢ |
| : , : , : |
55 | instantiation | 64, 62, 66, 67, 68 | , , , , ⊢ |
| : , : , : , : |
56 | instantiation | 69, 70, 63 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
58 | instantiation | 64, 65, 66, 67, 68 | , , , , ⊢ |
| : , : , : , : |
59 | instantiation | 69, 70, 71 | ⊢ |
| : , : , : |
60 | instantiation | 73, 72, 75, 74 | , ⊢ |
| : , : , : |
61 | instantiation | 82 | ⊢ |
| : , : |
62 | instantiation | 73, 76, 75, 72 | , ⊢ |
| : , : , : |
63 | instantiation | 82 | ⊢ |
| : , : |
64 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_complex_op_closure |
65 | instantiation | 73, 74, 75, 76 | , ⊢ |
| : , : , : |
66 | instantiation | 77, 80 | ⊢ |
| : |
67 | instantiation | 77, 79 | ⊢ |
| : |
68 | instantiation | 78, 79, 80, 81 | , , ⊢ |
| : , : , : |
69 | axiom | | ⊢ |
| proveit.physics.quantum.algebra.multi_qmult_def |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
71 | instantiation | 82 | ⊢ |
| : , : |
72 | assumption | | ⊢ |
73 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_complex_ket_closure |
74 | assumption | | ⊢ |
75 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
76 | assumption | | ⊢ |
77 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
78 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
79 | assumption | | ⊢ |
80 | assumption | | ⊢ |
81 | assumption | | ⊢ |
82 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
*equality replacement requirements |