logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, X, x
from proveit.linear_algebra import HilbertSpaces, Hspace, LinMap
from proveit.logic import And, InClass, InSet
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda([Hspace, X], Conditional(InSet(x, LinMap(Hspace, X)), And(InClass(Hspace, HilbertSpaces), InClass(X, HilbertSpaces)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(\mathcal{H}, X\right) \mapsto \left\{x \in \mathcal{L}\left(\mathcal{H}, X\right) \textrm{ if } \mathcal{H} \underset{{\scriptscriptstyle c}}{\in} \textrm{HilbertSpaces} ,  X \underset{{\scriptscriptstyle c}}{\in} \textrm{HilbertSpaces}\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 14
body: 2
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 10
7Literal
8ExprTuple11, 12
9Variable
10Operationoperator: 13
operands: 14
11Operationoperator: 16
operands: 15
12Operationoperator: 16
operands: 17
13Literal
14ExprTuple18, 19
15ExprTuple18, 20
16Literal
17ExprTuple19, 20
18Variable
19Variable
20Literal