logo

Expression of type Conditional

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, X, x
from proveit.linear_algebra import HilbertSpaces, Hspace, LinMap
from proveit.logic import And, InClass, InSet
In [2]:
# build up the expression from sub-expressions
expr = Conditional(InSet(x, LinMap(Hspace, X)), And(InClass(Hspace, HilbertSpaces), InClass(X, HilbertSpaces)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{x \in \mathcal{L}\left(\mathcal{H}, X\right) \textrm{ if } \mathcal{H} \underset{{\scriptscriptstyle c}}{\in} \textrm{HilbertSpaces} ,  X \underset{{\scriptscriptstyle c}}{\in} \textrm{HilbertSpaces}\right..
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
condition_delimiter'comma' or 'and'commacomma('with_comma_delimiter', 'with_conjunction_delimiter')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Conditionalvalue: 1
condition: 2
1Operationoperator: 3
operands: 4
2Operationoperator: 5
operands: 6
3Literal
4ExprTuple7, 8
5Literal
6ExprTuple9, 10
7Variable
8Operationoperator: 11
operands: 12
9Operationoperator: 14
operands: 13
10Operationoperator: 14
operands: 15
11Literal
12ExprTuple16, 17
13ExprTuple16, 18
14Literal
15ExprTuple17, 18
16Variable
17Variable
18Literal