logo

Expression of type Lambda

from the theory of proveit.physics.quantum.algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, X, x
from proveit.linear_algebra import HilbertSpaces, Hspace, LinMap
from proveit.logic import And, InClass, InSet
In [2]:
# build up the expression from sub-expressions
expr = Lambda([Hspace, X], Conditional(InSet(x, LinMap(Hspace, X)), And(InClass(Hspace, HilbertSpaces), InClass(X, HilbertSpaces))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\mathcal{H}, X\right) \mapsto \left\{x \in \mathcal{L}\left(\mathcal{H}, X\right) \textrm{ if } \mathcal{H} \underset{{\scriptscriptstyle c}}{\in} \textrm{HilbertSpaces} ,  X \underset{{\scriptscriptstyle c}}{\in} \textrm{HilbertSpaces}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 13
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 4
operands: 5
3Operationoperator: 6
operands: 7
4Literal
5ExprTuple8, 9
6Literal
7ExprTuple10, 11
8Variable
9Operationoperator: 12
operands: 13
10Operationoperator: 15
operands: 14
11Operationoperator: 15
operands: 16
12Literal
13ExprTuple17, 18
14ExprTuple17, 19
15Literal
16ExprTuple18, 19
17Variable
18Variable
19Literal