| step type | requirements | statement |
0 | generalization | 1 | ⊢ |
1 | instantiation | 2, 3, 4, 5 | , , ⊢ |
| : , : |
2 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.not_int_if_not_int_in_interval |
3 | conjecture | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
4 | instantiation | 6, 7, 8, 9, 10 | , ⊢ |
| : , : , : |
5 | instantiation | 11, 12 | , , ⊢ |
| : , : |
6 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.in_IntervalOO |
7 | instantiation | 141, 13, 207 | ⊢ |
| : , : |
8 | instantiation | 220, 221, 56 | ⊢ |
| : , : , : |
9 | instantiation | 141, 62, 65 | , ⊢ |
| : , : |
10 | instantiation | 14, 15, 16 | , ⊢ |
| : , : |
11 | conjecture | | ⊢ |
| proveit.numbers.addition.subtraction.nonzero_difference_if_different |
12 | instantiation | 17, 98, 127, 18 | , , ⊢ |
| : , : |
13 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
14 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_both |
15 | instantiation | 21, 19, 20 | , ⊢ |
| : , : , : |
16 | instantiation | 21, 22, 23 | , ⊢ |
| : , : , : |
17 | conjecture | | ⊢ |
| proveit.physics.quantum.QPE._delta_b_not_eq_scaledNonzeroInt |
18 | assumption | | ⊢ |
19 | instantiation | 26, 24, 25 | , ⊢ |
| : , : , : |
20 | instantiation | 29, 196 | ⊢ |
| : |
21 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
22 | instantiation | 26, 27, 28 | , ⊢ |
| : , : , : |
23 | instantiation | 29, 155 | ⊢ |
| : |
24 | instantiation | 64, 104, 30, 65, 31, 32* | ⊢ |
| : , : , : |
25 | instantiation | 33, 65, 104, 62, 34 | , ⊢ |
| : , : , : |
26 | conjecture | | ⊢ |
| proveit.numbers.ordering.transitivity_less_eq_less |
27 | instantiation | 35, 36, 37, 38* | , ⊢ |
| : , : , : |
28 | instantiation | 39, 190, 232, 40, 191, 41, 216 | ⊢ |
| : , : , : , : , : |
29 | conjecture | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
30 | instantiation | 215, 59 | ⊢ |
| : |
31 | instantiation | 80, 82, 59, 42 | ⊢ |
| : , : |
32 | instantiation | 43, 106, 44, 155, 45 | ⊢ |
| : , : , : |
33 | conjecture | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
34 | instantiation | 46, 104, 119, 79 | ⊢ |
| : , : , : |
35 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
36 | instantiation | 47, 48, 49 | , ⊢ |
| : , : , : |
37 | instantiation | 50, 218, 51, 52, 155, 95, 149, 53* | ⊢ |
| : , : , : |
38 | instantiation | 174, 54, 55 | ⊢ |
| : , : , : |
39 | conjecture | | ⊢ |
| proveit.numbers.addition.term_as_strong_upper_bound |
40 | instantiation | 118, 56 | ⊢ |
| : |
41 | instantiation | 57, 130 | ⊢ |
| : |
42 | instantiation | 99, 112, 101, 111, 58, 103 | ⊢ |
| : , : , : |
43 | conjecture | | ⊢ |
| proveit.numbers.addition.subtraction.negated_add |
44 | instantiation | 230, 206, 59 | ⊢ |
| : , : , : |
45 | instantiation | 174, 60, 92 | ⊢ |
| : , : , : |
46 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_oc_lower_bound |
47 | conjecture | | ⊢ |
| proveit.numbers.ordering.transitivity_less_eq_less_eq |
48 | instantiation | 61, 65, 62, 119, 63 | , ⊢ |
| : , : , : |
49 | instantiation | 64, 119, 65, 66, 67 | ⊢ |
| : , : , : |
50 | conjecture | | ⊢ |
| proveit.numbers.division.distribute_frac_through_sum |
51 | instantiation | 204 | ⊢ |
| : , : |
52 | instantiation | 230, 206, 68 | ⊢ |
| : , : , : |
53 | instantiation | 69, 94, 95, 149, 76* | ⊢ |
| : , : |
54 | instantiation | 157, 70 | ⊢ |
| : , : , : |
55 | instantiation | 174, 71, 72 | ⊢ |
| : , : , : |
56 | instantiation | 73, 232, 190, 191, 74 | ⊢ |
| : , : , : , : , : |
57 | conjecture | | ⊢ |
| proveit.numbers.negation.real_neg_closure |
58 | instantiation | 75, 163, 201, 145 | ⊢ |
| : , : , : |
59 | instantiation | 128, 111, 112, 149 | ⊢ |
| : , : |
60 | instantiation | 157, 76 | ⊢ |
| : , : , : |
61 | conjecture | | ⊢ |
| proveit.numbers.addition.weak_bound_via_left_term_bound |
62 | instantiation | 77, 104, 119, 79 | ⊢ |
| : , : , : |
63 | instantiation | 78, 104, 119, 79 | ⊢ |
| : , : , : |
64 | conjecture | | ⊢ |
| proveit.numbers.addition.weak_bound_via_right_term_bound |
65 | instantiation | 215, 82 | ⊢ |
| : |
66 | instantiation | 215, 81 | ⊢ |
| : |
67 | instantiation | 80, 81, 82, 83 | ⊢ |
| : , : |
68 | instantiation | 230, 223, 84 | ⊢ |
| : , : , : |
69 | conjecture | | ⊢ |
| proveit.numbers.division.neg_frac_neg_numerator |
70 | instantiation | 85, 86, 108, 87* | ⊢ |
| : , : |
71 | instantiation | 189, 232, 225, 190, 88, 191, 106, 91 | ⊢ |
| : , : , : , : , : , : |
72 | instantiation | 89, 190, 225, 232, 191, 90, 106, 91, 92* | ⊢ |
| : , : , : , : , : , : |
73 | conjecture | | ⊢ |
| proveit.numbers.addition.add_nat_pos_from_nonneg |
74 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
75 | conjecture | | ⊢ |
| proveit.numbers.number_sets.integers.interval_upper_bound |
76 | instantiation | 93, 94, 95, 149, 96* | ⊢ |
| : , : |
77 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.all_in_interval_oc__is__real |
78 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_oc_upper_bound |
79 | instantiation | 97, 98 | ⊢ |
| : |
80 | conjecture | | ⊢ |
| proveit.numbers.negation.negated_weak_bound |
81 | instantiation | 128, 100, 112, 149 | ⊢ |
| : , : |
82 | instantiation | 128, 101, 112, 149 | ⊢ |
| : , : |
83 | instantiation | 99, 112, 100, 101, 102, 103 | ⊢ |
| : , : , : |
84 | instantiation | 230, 228, 181 | ⊢ |
| : , : , : |
85 | conjecture | | ⊢ |
| proveit.numbers.negation.distribute_neg_through_binary_sum |
86 | instantiation | 230, 206, 104 | ⊢ |
| : , : , : |
87 | instantiation | 105, 106 | ⊢ |
| : |
88 | instantiation | 204 | ⊢ |
| : , : |
89 | conjecture | | ⊢ |
| proveit.numbers.addition.association |
90 | instantiation | 204 | ⊢ |
| : , : |
91 | instantiation | 107, 108 | ⊢ |
| : |
92 | instantiation | 109, 229, 219, 110* | ⊢ |
| : , : , : , : |
93 | conjecture | | ⊢ |
| proveit.numbers.division.div_as_mult |
94 | instantiation | 230, 206, 111 | ⊢ |
| : , : , : |
95 | instantiation | 230, 206, 112 | ⊢ |
| : , : , : |
96 | instantiation | 174, 113, 114 | ⊢ |
| : , : , : |
97 | conjecture | | ⊢ |
| proveit.physics.quantum.QPE._delta_b_in_interval |
98 | assumption | | ⊢ |
99 | conjecture | | ⊢ |
| proveit.numbers.division.weak_div_from_numer_bound__pos_denom |
100 | instantiation | 230, 223, 115 | ⊢ |
| : , : , : |
101 | instantiation | 230, 223, 116 | ⊢ |
| : , : , : |
102 | instantiation | 117, 163, 201, 145 | ⊢ |
| : , : , : |
103 | instantiation | 118, 184 | ⊢ |
| : |
104 | instantiation | 215, 119 | ⊢ |
| : |
105 | conjecture | | ⊢ |
| proveit.numbers.negation.double_negation |
106 | instantiation | 230, 206, 119 | ⊢ |
| : , : , : |
107 | conjecture | | ⊢ |
| proveit.numbers.negation.complex_closure |
108 | instantiation | 230, 206, 120 | ⊢ |
| : , : , : |
109 | conjecture | | ⊢ |
| proveit.numbers.addition.rational_pair_addition |
110 | instantiation | 174, 121, 122 | ⊢ |
| : , : , : |
111 | instantiation | 220, 221, 212 | ⊢ |
| : , : , : |
112 | instantiation | 220, 221, 184 | ⊢ |
| : , : , : |
113 | instantiation | 157, 123 | ⊢ |
| : , : , : |
114 | instantiation | 124, 187, 125, 205, 139, 126* | ⊢ |
| : , : , : |
115 | instantiation | 230, 228, 163 | ⊢ |
| : , : , : |
116 | instantiation | 230, 228, 127 | ⊢ |
| : , : , : |
117 | conjecture | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
118 | conjecture | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
119 | instantiation | 128, 216, 202, 139 | ⊢ |
| : , : |
120 | instantiation | 230, 129, 130 | ⊢ |
| : , : , : |
121 | instantiation | 168, 225, 131, 132, 133, 134 | ⊢ |
| : , : , : , : |
122 | instantiation | 135, 136, 137 | ⊢ |
| : |
123 | instantiation | 138, 187, 214, 207, 139, 140* | ⊢ |
| : , : , : |
124 | conjecture | | ⊢ |
| proveit.numbers.exponentiation.product_of_real_powers |
125 | instantiation | 141, 214, 207 | ⊢ |
| : , : |
126 | instantiation | 174, 142, 143 | ⊢ |
| : , : , : |
127 | instantiation | 230, 144, 145 | ⊢ |
| : , : , : |
128 | conjecture | | ⊢ |
| proveit.numbers.division.div_real_closure |
129 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
130 | instantiation | 146, 147, 148, 149 | ⊢ |
| : , : |
131 | instantiation | 204 | ⊢ |
| : , : |
132 | instantiation | 204 | ⊢ |
| : , : |
133 | instantiation | 174, 150, 151 | ⊢ |
| : , : , : |
134 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.mult_2_2 |
135 | conjecture | | ⊢ |
| proveit.numbers.division.frac_cancel_complete |
136 | instantiation | 230, 206, 152 | ⊢ |
| : , : , : |
137 | instantiation | 167, 153 | ⊢ |
| : |
138 | conjecture | | ⊢ |
| proveit.numbers.exponentiation.real_power_of_real_power |
139 | instantiation | 167, 218 | ⊢ |
| : |
140 | instantiation | 154, 195, 155, 156* | ⊢ |
| : , : |
141 | conjecture | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
142 | instantiation | 157, 158 | ⊢ |
| : , : , : |
143 | instantiation | 159, 160, 182, 161* | ⊢ |
| : , : |
144 | instantiation | 162, 163, 201 | ⊢ |
| : , : |
145 | assumption | | ⊢ |
146 | conjecture | | ⊢ |
| proveit.numbers.division.div_real_pos_closure |
147 | instantiation | 230, 165, 164 | ⊢ |
| : , : , : |
148 | instantiation | 230, 165, 166 | ⊢ |
| : , : , : |
149 | instantiation | 167, 184 | ⊢ |
| : |
150 | instantiation | 168, 225, 169, 170, 171, 172 | ⊢ |
| : , : , : , : |
151 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.add_2_2 |
152 | instantiation | 230, 223, 173 | ⊢ |
| : , : , : |
153 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.posnat4 |
154 | conjecture | | ⊢ |
| proveit.numbers.multiplication.mult_neg_right |
155 | instantiation | 230, 206, 216 | ⊢ |
| : , : , : |
156 | instantiation | 186, 195 | ⊢ |
| : |
157 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
158 | instantiation | 174, 175, 176 | ⊢ |
| : , : , : |
159 | conjecture | | ⊢ |
| proveit.numbers.exponentiation.neg_power_as_div |
160 | instantiation | 230, 177, 178 | ⊢ |
| : , : , : |
161 | instantiation | 179, 187 | ⊢ |
| : |
162 | conjecture | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
163 | instantiation | 180, 181, 229 | ⊢ |
| : , : |
164 | instantiation | 230, 183, 182 | ⊢ |
| : , : , : |
165 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_pos_within_real_pos |
166 | instantiation | 230, 183, 184 | ⊢ |
| : , : , : |
167 | conjecture | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
168 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
169 | instantiation | 204 | ⊢ |
| : , : |
170 | instantiation | 204 | ⊢ |
| : , : |
171 | instantiation | 185, 187 | ⊢ |
| : |
172 | instantiation | 186, 187 | ⊢ |
| : |
173 | instantiation | 230, 228, 188 | ⊢ |
| : , : , : |
174 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
175 | instantiation | 189, 190, 225, 232, 191, 192, 195, 196, 193 | ⊢ |
| : , : , : , : , : , : |
176 | instantiation | 194, 195, 196, 197 | ⊢ |
| : , : , : |
177 | conjecture | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
178 | instantiation | 230, 198, 199 | ⊢ |
| : , : , : |
179 | conjecture | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
180 | conjecture | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
181 | instantiation | 200, 201 | ⊢ |
| : |
182 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
183 | conjecture | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
184 | conjecture | | ⊢ |
| proveit.physics.quantum.QPE._two_pow_t_is_nat_pos |
185 | conjecture | | ⊢ |
| proveit.numbers.multiplication.elim_one_left |
186 | conjecture | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
187 | instantiation | 230, 206, 202 | ⊢ |
| : , : , : |
188 | instantiation | 230, 231, 203 | ⊢ |
| : , : , : |
189 | conjecture | | ⊢ |
| proveit.numbers.addition.disassociation |
190 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
191 | conjecture | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
192 | instantiation | 204 | ⊢ |
| : , : |
193 | instantiation | 230, 206, 205 | ⊢ |
| : , : , : |
194 | conjecture | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_13 |
195 | instantiation | 230, 206, 214 | ⊢ |
| : , : , : |
196 | instantiation | 230, 206, 207 | ⊢ |
| : , : , : |
197 | instantiation | 208 | ⊢ |
| : |
198 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
199 | instantiation | 230, 209, 210 | ⊢ |
| : , : , : |
200 | conjecture | | ⊢ |
| proveit.numbers.negation.int_closure |
201 | instantiation | 230, 211, 212 | ⊢ |
| : , : , : |
202 | instantiation | 230, 223, 213 | ⊢ |
| : , : , : |
203 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
204 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
205 | instantiation | 215, 214 | ⊢ |
| : |
206 | conjecture | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
207 | instantiation | 215, 216 | ⊢ |
| : |
208 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
209 | conjecture | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
210 | instantiation | 230, 217, 218 | ⊢ |
| : , : , : |
211 | conjecture | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
212 | conjecture | | ⊢ |
| proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos |
213 | instantiation | 230, 228, 219 | ⊢ |
| : , : , : |
214 | instantiation | 220, 221, 222 | ⊢ |
| : , : , : |
215 | conjecture | | ⊢ |
| proveit.numbers.negation.real_closure |
216 | instantiation | 230, 223, 224 | ⊢ |
| : , : , : |
217 | conjecture | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
218 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
219 | instantiation | 230, 231, 225 | ⊢ |
| : , : , : |
220 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
221 | instantiation | 226, 227 | ⊢ |
| : , : |
222 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
223 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
224 | instantiation | 230, 228, 229 | ⊢ |
| : , : , : |
225 | conjecture | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
226 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
227 | conjecture | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
228 | conjecture | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
229 | instantiation | 230, 231, 232 | ⊢ |
| : , : , : |
230 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
231 | conjecture | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
232 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |