logo
In [1]:
import proveit
from proveit.physics.quantum.QPE import _t_in_natural_pos
theory = proveit.Theory() # the theorem's theory
In [2]:
%proving _two_pow_t_is_nat_pos
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
_two_pow_t_is_nat_pos:
(see dependencies)
_two_pow_t_is_nat_pos may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [3]:
# Recall that t (represented by the Literal t_)
# denotes the number of Qbits in the input register.
# Considered an axiom that t is a positive natural number
In [4]:
%qed
proveit.physics.quantum.QPE._two_pow_t_is_nat_pos has been proven.