| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6 | , ⊢ |
| : , : , : |
1 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_even_neg_base_lesseq |
2 | reference | 77 | ⊢ |
3 | instantiation | 7, 41, 13 | , ⊢ |
| : , : |
4 | reference | 41 | , ⊢ |
5 | instantiation | 8, 9, 10 | , ⊢ |
| : , : |
6 | instantiation | 11 | ⊢ |
| : |
7 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
8 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_both |
9 | instantiation | 12, 41, 13, 33, 14, 15* | , ⊢ |
| : , : , : |
10 | instantiation | 16, 17, 18 | , ⊢ |
| : , : , : |
11 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
12 | theorem | | ⊢ |
| proveit.numbers.addition.weak_bound_via_right_term_bound |
13 | instantiation | 30, 21 | ⊢ |
| : |
14 | instantiation | 19, 20, 33, 21, 22, 23, 24*, 25* | ⊢ |
| : , : , : |
15 | instantiation | 26, 27 | , ⊢ |
| : |
16 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_eq_less |
17 | instantiation | 28, 82, 83, 72 | , ⊢ |
| : , : , : |
18 | instantiation | 43, 29 | ⊢ |
| : |
19 | theorem | | ⊢ |
| proveit.numbers.multiplication.reversed_weak_bound_via_right_factor_bound |
20 | instantiation | 30, 65 | ⊢ |
| : |
21 | instantiation | 31, 33, 65, 34 | ⊢ |
| : , : , : |
22 | instantiation | 32, 33, 65, 34 | ⊢ |
| : , : , : |
23 | instantiation | 35, 36 | ⊢ |
| : , : |
24 | instantiation | 37, 38, 39 | ⊢ |
| : , : , : |
25 | instantiation | 40, 46 | ⊢ |
| : |
26 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
27 | instantiation | 109, 78, 41 | , ⊢ |
| : , : , : |
28 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_upper_bound |
29 | instantiation | 52, 42 | ⊢ |
| : |
30 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
31 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.all_in_interval_co__is__real |
32 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_co_lower_bound |
33 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
34 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._scaled_delta_b_floor_in_interval |
35 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
36 | instantiation | 43, 44 | ⊢ |
| : |
37 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
38 | instantiation | 45, 101, 111, 57, 59, 58, 46, 60, 61 | ⊢ |
| : , : , : , : , : , : |
39 | instantiation | 47, 57, 111, 58, 59, 55, 60, 61, 48* | ⊢ |
| : , : , : , : , : |
40 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_zero_right |
41 | instantiation | 109, 85, 49 | , ⊢ |
| : , : , : |
42 | instantiation | 50, 51, 53 | ⊢ |
| : , : |
43 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.negative_if_in_neg_int |
44 | instantiation | 52, 53 | ⊢ |
| : |
45 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
46 | instantiation | 54, 55 | ⊢ |
| : |
47 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_neg_any |
48 | instantiation | 56, 57, 111, 58, 59, 60, 61 | ⊢ |
| : , : , : , : |
49 | instantiation | 109, 92, 62 | , ⊢ |
| : , : , : |
50 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_closure_bin |
51 | instantiation | 63, 95, 64 | ⊢ |
| : |
52 | theorem | | ⊢ |
| proveit.numbers.negation.int_neg_closure |
53 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
54 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
55 | instantiation | 109, 78, 65 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_any |
57 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
58 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
59 | instantiation | 66 | ⊢ |
| : , : |
60 | instantiation | 67, 68, 69 | ⊢ |
| : , : |
61 | instantiation | 109, 78, 70 | ⊢ |
| : , : , : |
62 | instantiation | 109, 71, 72 | , ⊢ |
| : , : , : |
63 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.pos_int_is_natural_pos |
64 | instantiation | 73, 74, 75 | ⊢ |
| : , : , : |
65 | instantiation | 109, 85, 76 | ⊢ |
| : , : , : |
66 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
67 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
68 | instantiation | 109, 78, 77 | ⊢ |
| : , : , : |
69 | instantiation | 109, 78, 79 | ⊢ |
| : , : , : |
70 | instantiation | 80, 81 | ⊢ |
| : |
71 | instantiation | 98, 82, 83 | ⊢ |
| : , : |
72 | assumption | | ⊢ |
73 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
74 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
75 | instantiation | 84, 99, 100, 97 | ⊢ |
| : , : , : |
76 | instantiation | 109, 92, 99 | ⊢ |
| : , : , : |
77 | instantiation | 109, 85, 86 | ⊢ |
| : , : , : |
78 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
79 | instantiation | 87, 88, 89 | ⊢ |
| : , : , : |
80 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._delta_b_is_real |
81 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._best_floor_is_int |
82 | instantiation | 102, 90, 99 | ⊢ |
| : , : |
83 | instantiation | 107, 91 | ⊢ |
| : |
84 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
85 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
86 | instantiation | 109, 92, 108 | ⊢ |
| : , : , : |
87 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
88 | instantiation | 93, 94 | ⊢ |
| : , : |
89 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
90 | instantiation | 107, 103 | ⊢ |
| : |
91 | instantiation | 102, 95, 99 | ⊢ |
| : , : |
92 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
93 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
94 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
95 | instantiation | 109, 96, 97 | ⊢ |
| : , : , : |
96 | instantiation | 98, 99, 100 | ⊢ |
| : , : |
97 | assumption | | ⊢ |
98 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
99 | instantiation | 109, 110, 101 | ⊢ |
| : , : , : |
100 | instantiation | 102, 103, 104 | ⊢ |
| : , : |
101 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
102 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
103 | instantiation | 109, 105, 106 | ⊢ |
| : , : , : |
104 | instantiation | 107, 108 | ⊢ |
| : |
105 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
106 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos |
107 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
108 | instantiation | 109, 110, 111 | ⊢ |
| : , : , : |
109 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
110 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
111 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |