logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4, 5, 6,  ⊢  
  : , : , :
1theorem  ⊢  
 proveit.numbers.exponentiation.exp_even_neg_base_lesseq
2reference77  ⊢  
3instantiation7, 41, 13,  ⊢  
  : , :
4reference41,  ⊢  
5instantiation8, 9, 10,  ⊢  
  : , :
6instantiation11  ⊢  
  :
7theorem  ⊢  
 proveit.numbers.addition.add_real_closure_bin
8theorem  ⊢  
 proveit.logic.booleans.conjunction.and_if_both
9instantiation12, 41, 13, 33, 14, 15*,  ⊢  
  : , : , :
10instantiation16, 17, 18,  ⊢  
  : , : , :
11axiom  ⊢  
 proveit.logic.equality.equals_reflexivity
12theorem  ⊢  
 proveit.numbers.addition.weak_bound_via_right_term_bound
13instantiation30, 21  ⊢  
  :
14instantiation19, 20, 33, 21, 22, 23, 24*, 25*  ⊢  
  : , : , :
15instantiation26, 27,  ⊢  
  :
16theorem  ⊢  
 proveit.numbers.ordering.transitivity_less_eq_less
17instantiation28, 82, 83, 72,  ⊢  
  : , : , :
18instantiation43, 29  ⊢  
  :
19theorem  ⊢  
 proveit.numbers.multiplication.reversed_weak_bound_via_right_factor_bound
20instantiation30, 65  ⊢  
  :
21instantiation31, 33, 65, 34  ⊢  
  : , : , :
22instantiation32, 33, 65, 34  ⊢  
  : , : , :
23instantiation35, 36  ⊢  
  : , :
24instantiation37, 38, 39  ⊢  
  : , : , :
25instantiation40, 46  ⊢  
  :
26theorem  ⊢  
 proveit.numbers.addition.elim_zero_right
27instantiation109, 78, 41,  ⊢  
  : , : , :
28theorem  ⊢  
 proveit.numbers.number_sets.integers.interval_upper_bound
29instantiation52, 42  ⊢  
  :
30theorem  ⊢  
 proveit.numbers.negation.real_closure
31theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.all_in_interval_co__is__real
32theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.interval_co_lower_bound
33theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
34theorem  ⊢  
 proveit.physics.quantum.QPE._scaled_delta_b_floor_in_interval
35theorem  ⊢  
 proveit.numbers.ordering.relax_less
36instantiation43, 44  ⊢  
  :
37axiom  ⊢  
 proveit.logic.equality.equals_transitivity
38instantiation45, 101, 111, 57, 59, 58, 46, 60, 61  ⊢  
  : , : , : , : , : , :
39instantiation47, 57, 111, 58, 59, 55, 60, 61, 48*  ⊢  
  : , : , : , : , :
40theorem  ⊢  
 proveit.numbers.multiplication.mult_zero_right
41instantiation109, 85, 49,  ⊢  
  : , : , :
42instantiation50, 51, 53  ⊢  
  : , :
43theorem  ⊢  
 proveit.numbers.number_sets.integers.negative_if_in_neg_int
44instantiation52, 53  ⊢  
  :
45theorem  ⊢  
 proveit.numbers.multiplication.disassociation
46instantiation54, 55  ⊢  
  :
47theorem  ⊢  
 proveit.numbers.multiplication.mult_neg_any
48instantiation56, 57, 111, 58, 59, 60, 61  ⊢  
  : , : , : , :
49instantiation109, 92, 62,  ⊢  
  : , : , :
50theorem  ⊢  
 proveit.numbers.addition.add_nat_pos_closure_bin
51instantiation63, 95, 64  ⊢  
  :
52theorem  ⊢  
 proveit.numbers.negation.int_neg_closure
53theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
54theorem  ⊢  
 proveit.numbers.negation.complex_closure
55instantiation109, 78, 65  ⊢  
  : , : , :
56theorem  ⊢  
 proveit.numbers.multiplication.elim_one_any
57axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
58theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
59instantiation66  ⊢  
  : , :
60instantiation67, 68, 69  ⊢  
  : , :
61instantiation109, 78, 70  ⊢  
  : , : , :
62instantiation109, 71, 72,  ⊢  
  : , : , :
63theorem  ⊢  
 proveit.numbers.number_sets.integers.pos_int_is_natural_pos
64instantiation73, 74, 75  ⊢  
  : , : , :
65instantiation109, 85, 76  ⊢  
  : , : , :
66theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
67theorem  ⊢  
 proveit.numbers.exponentiation.exp_complex_closure
68instantiation109, 78, 77  ⊢  
  : , : , :
69instantiation109, 78, 79  ⊢  
  : , : , :
70instantiation80, 81  ⊢  
  :
71instantiation98, 82, 83  ⊢  
  : , :
72assumption  ⊢  
73theorem  ⊢  
 proveit.numbers.ordering.transitivity_less_less_eq
74theorem  ⊢  
 proveit.numbers.numerals.decimals.less_0_1
75instantiation84, 99, 100, 97  ⊢  
  : , : , :
76instantiation109, 92, 99  ⊢  
  : , : , :
77instantiation109, 85, 86  ⊢  
  : , : , :
78theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
79instantiation87, 88, 89  ⊢  
  : , : , :
80theorem  ⊢  
 proveit.physics.quantum.QPE._delta_b_is_real
81theorem  ⊢  
 proveit.physics.quantum.QPE._best_floor_is_int
82instantiation102, 90, 99  ⊢  
  : , :
83instantiation107, 91  ⊢  
  :
84theorem  ⊢  
 proveit.numbers.number_sets.integers.interval_lower_bound
85theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
86instantiation109, 92, 108  ⊢  
  : , : , :
87theorem  ⊢  
 proveit.logic.sets.inclusion.unfold_subset_eq
88instantiation93, 94  ⊢  
  : , :
89axiom  ⊢  
 proveit.physics.quantum.QPE._t_in_natural_pos
90instantiation107, 103  ⊢  
  :
91instantiation102, 95, 99  ⊢  
  : , :
92theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
93theorem  ⊢  
 proveit.logic.sets.inclusion.relax_proper_subset
94theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.nat_pos_within_real
95instantiation109, 96, 97  ⊢  
  : , : , :
96instantiation98, 99, 100  ⊢  
  : , :
97assumption  ⊢  
98theorem  ⊢  
 proveit.numbers.number_sets.integers.int_interval_within_int
99instantiation109, 110, 101  ⊢  
  : , : , :
100instantiation102, 103, 104  ⊢  
  : , :
101theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
102theorem  ⊢  
 proveit.numbers.addition.add_int_closure_bin
103instantiation109, 105, 106  ⊢  
  : , : , :
104instantiation107, 108  ⊢  
  :
105theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_int
106theorem  ⊢  
 proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos
107theorem  ⊢  
 proveit.numbers.negation.int_closure
108instantiation109, 110, 111  ⊢  
  : , : , :
109theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
110theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
111theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
*equality replacement requirements