| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , ⊢ |
| : , : |
1 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_both |
2 | instantiation | 4, 33, 5, 25, 6, 7* | , ⊢ |
| : , : , : |
3 | instantiation | 8, 9, 10 | , ⊢ |
| : , : , : |
4 | theorem | | ⊢ |
| proveit.numbers.addition.weak_bound_via_right_term_bound |
5 | instantiation | 22, 13 | ⊢ |
| : |
6 | instantiation | 11, 12, 25, 13, 14, 15, 16*, 17* | ⊢ |
| : , : , : |
7 | instantiation | 18, 19 | , ⊢ |
| : |
8 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_eq_less |
9 | instantiation | 20, 74, 75, 64 | , ⊢ |
| : , : , : |
10 | instantiation | 35, 21 | ⊢ |
| : |
11 | theorem | | ⊢ |
| proveit.numbers.multiplication.reversed_weak_bound_via_right_factor_bound |
12 | instantiation | 22, 57 | ⊢ |
| : |
13 | instantiation | 23, 25, 57, 26 | ⊢ |
| : , : , : |
14 | instantiation | 24, 25, 57, 26 | ⊢ |
| : , : , : |
15 | instantiation | 27, 28 | ⊢ |
| : , : |
16 | instantiation | 29, 30, 31 | ⊢ |
| : , : , : |
17 | instantiation | 32, 38 | ⊢ |
| : |
18 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
19 | instantiation | 101, 70, 33 | , ⊢ |
| : , : , : |
20 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_upper_bound |
21 | instantiation | 44, 34 | ⊢ |
| : |
22 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
23 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.all_in_interval_co__is__real |
24 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_co_lower_bound |
25 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
26 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._scaled_delta_b_floor_in_interval |
27 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
28 | instantiation | 35, 36 | ⊢ |
| : |
29 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
30 | instantiation | 37, 93, 103, 49, 51, 50, 38, 52, 53 | ⊢ |
| : , : , : , : , : , : |
31 | instantiation | 39, 49, 103, 50, 51, 47, 52, 53, 40* | ⊢ |
| : , : , : , : , : |
32 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_zero_right |
33 | instantiation | 101, 77, 41 | , ⊢ |
| : , : , : |
34 | instantiation | 42, 43, 45 | ⊢ |
| : , : |
35 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.negative_if_in_neg_int |
36 | instantiation | 44, 45 | ⊢ |
| : |
37 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
38 | instantiation | 46, 47 | ⊢ |
| : |
39 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_neg_any |
40 | instantiation | 48, 49, 103, 50, 51, 52, 53 | ⊢ |
| : , : , : , : |
41 | instantiation | 101, 84, 54 | , ⊢ |
| : , : , : |
42 | theorem | | ⊢ |
| proveit.numbers.addition.add_nat_pos_closure_bin |
43 | instantiation | 55, 87, 56 | ⊢ |
| : |
44 | theorem | | ⊢ |
| proveit.numbers.negation.int_neg_closure |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
46 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
47 | instantiation | 101, 70, 57 | ⊢ |
| : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_any |
49 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
50 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
51 | instantiation | 58 | ⊢ |
| : , : |
52 | instantiation | 59, 60, 61 | ⊢ |
| : , : |
53 | instantiation | 101, 70, 62 | ⊢ |
| : , : , : |
54 | instantiation | 101, 63, 64 | , ⊢ |
| : , : , : |
55 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.pos_int_is_natural_pos |
56 | instantiation | 65, 66, 67 | ⊢ |
| : , : , : |
57 | instantiation | 101, 77, 68 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
59 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
60 | instantiation | 101, 70, 69 | ⊢ |
| : , : , : |
61 | instantiation | 101, 70, 71 | ⊢ |
| : , : , : |
62 | instantiation | 72, 73 | ⊢ |
| : |
63 | instantiation | 90, 74, 75 | ⊢ |
| : , : |
64 | assumption | | ⊢ |
65 | theorem | | ⊢ |
| proveit.numbers.ordering.transitivity_less_less_eq |
66 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
67 | instantiation | 76, 91, 92, 89 | ⊢ |
| : , : , : |
68 | instantiation | 101, 84, 91 | ⊢ |
| : , : , : |
69 | instantiation | 101, 77, 78 | ⊢ |
| : , : , : |
70 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
71 | instantiation | 79, 80, 81 | ⊢ |
| : , : , : |
72 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._delta_b_is_real |
73 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._best_floor_is_int |
74 | instantiation | 94, 82, 91 | ⊢ |
| : , : |
75 | instantiation | 99, 83 | ⊢ |
| : |
76 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.interval_lower_bound |
77 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
78 | instantiation | 101, 84, 100 | ⊢ |
| : , : , : |
79 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
80 | instantiation | 85, 86 | ⊢ |
| : , : |
81 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
82 | instantiation | 99, 95 | ⊢ |
| : |
83 | instantiation | 94, 87, 91 | ⊢ |
| : , : |
84 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
85 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
86 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
87 | instantiation | 101, 88, 89 | ⊢ |
| : , : , : |
88 | instantiation | 90, 91, 92 | ⊢ |
| : , : |
89 | assumption | | ⊢ |
90 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
91 | instantiation | 101, 102, 93 | ⊢ |
| : , : , : |
92 | instantiation | 94, 95, 96 | ⊢ |
| : , : |
93 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
94 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
95 | instantiation | 101, 97, 98 | ⊢ |
| : , : , : |
96 | instantiation | 99, 100 | ⊢ |
| : |
97 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
98 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos |
99 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
100 | instantiation | 101, 102, 103 | ⊢ |
| : , : , : |
101 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
102 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
103 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |