logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  :
1theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.nonzero_complex_is_complex_nonzero
2instantiation40, 4, 5  ⊢  
  : , : , :
3instantiation6, 7, 8  ⊢  
  : , :
4theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
5instantiation9, 10, 42  ⊢  
  : , :
6theorem  ⊢  
 proveit.numbers.exponentiation.exp_rational_non_zero__not_zero
7instantiation40, 12, 11  ⊢  
  : , : , :
8instantiation40, 12, 13  ⊢  
  : , : , :
9theorem  ⊢  
 proveit.numbers.exponentiation.exp_real_closure_nat_power
10instantiation40, 14, 15  ⊢  
  : , : , :
11instantiation40, 17, 16  ⊢  
  : , : , :
12theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
13instantiation40, 17, 18  ⊢  
  : , : , :
14theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
15instantiation40, 19, 21  ⊢  
  : , : , :
16instantiation20, 21, 22  ⊢  
  :
17theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
18theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
19theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
20theorem  ⊢  
 proveit.numbers.number_sets.integers.pos_int_is_natural_pos
21instantiation40, 23, 31  ⊢  
  : , : , :
22instantiation24, 25, 26  ⊢  
  : , : , :
23instantiation27, 29, 30  ⊢  
  : , :
24theorem  ⊢  
 proveit.numbers.ordering.transitivity_less_less_eq
25theorem  ⊢  
 proveit.numbers.numerals.decimals.less_0_1
26instantiation28, 29, 30, 31  ⊢  
  : , : , :
27theorem  ⊢  
 proveit.numbers.number_sets.integers.int_interval_within_int
28theorem  ⊢  
 proveit.numbers.number_sets.integers.interval_lower_bound
29instantiation40, 41, 32  ⊢  
  : , : , :
30instantiation33, 34, 35  ⊢  
  : , :
31assumption  ⊢  
32theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
33theorem  ⊢  
 proveit.numbers.addition.add_int_closure_bin
34instantiation40, 36, 37  ⊢  
  : , : , :
35instantiation38, 39  ⊢  
  :
36theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_int
37theorem  ⊢  
 proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos
38theorem  ⊢  
 proveit.numbers.negation.int_closure
39instantiation40, 41, 42  ⊢  
  : , : , :
40theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
41theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
42theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2