logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , : , :
1reference26  ⊢  
2theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
3instantiation26, 4, 5  ⊢  
  : , : , :
4theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
5instantiation6, 7, 8  ⊢  
  :
6theorem  ⊢  
 proveit.numbers.number_sets.integers.pos_int_is_natural_pos
7instantiation26, 9, 17  ⊢  
  : , : , :
8instantiation10, 11, 12  ⊢  
  : , : , :
9instantiation13, 15, 16  ⊢  
  : , :
10theorem  ⊢  
 proveit.numbers.ordering.transitivity_less_less_eq
11theorem  ⊢  
 proveit.numbers.numerals.decimals.less_0_1
12instantiation14, 15, 16, 17  ⊢  
  : , : , :
13theorem  ⊢  
 proveit.numbers.number_sets.integers.int_interval_within_int
14theorem  ⊢  
 proveit.numbers.number_sets.integers.interval_lower_bound
15instantiation26, 27, 18  ⊢  
  : , : , :
16instantiation19, 20, 21  ⊢  
  : , :
17assumption  ⊢  
18theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
19theorem  ⊢  
 proveit.numbers.addition.add_int_closure_bin
20instantiation26, 22, 23  ⊢  
  : , : , :
21instantiation24, 25  ⊢  
  :
22theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_int
23theorem  ⊢  
 proveit.physics.quantum.QPE._two_pow_t_minus_one_is_nat_pos
24theorem  ⊢  
 proveit.numbers.negation.int_closure
25instantiation26, 27, 28  ⊢  
  : , : , :
26theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
27theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
28theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2